Cholinesterases of Aquatic Animals

  • V. I. Kozlovskaya
  • F. L. Mayer
  • O. V. Menzikova
  • G. M. Chuyko
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 132)


Cholinesterases (ChE) were discovered in 1906 (Hunt and Taveaux 1906). In 1943, a hypothesis was advanced that two types of enzymes exist, referred to as “true cholinesterases” and “pseudocholinesterases.” According to the latest nomenclature, they correspond to two groups: acetylcholinesterase-acetylcholine-acetylhydrolase [EC, acetylcholinesterase (AChE)] and cholinesterase-acylcholine-acylhydrolase [EC, butyrylcholinesterase (BuChE)] (Dikson and Webb 1982; Nomenclature of Enzymes 1979).


AChE Activity Aquatic Animal Crucian Carp Bony Fish Cutthroat Trout 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abou-Donia MB, Menzel DB (1967) Fish brain cholinesterase: Its inhibition by carbamates and automatic assay. Comp Biochem Physiol 21: 99–108.PubMedCrossRefGoogle Scholar
  2. Augustinsson KB (1948) Cholinesterases: A study in comparative enzymology. Acta Physiol Scand 15 (252): 1–182.Google Scholar
  3. Augustinsson KB (1949) Substrate concentration and specificity of choline-splitting enzymes. Arch Biochem 23: 114–126.Google Scholar
  4. Augustinsson KB (1959) Electrophoretic studies on blood plasma esterases: II. Avian, amphibian and piscine plasmata. Acta Chem Scand 13 (6): 1081–1096.CrossRefGoogle Scholar
  5. Baldwin J, Hochachka PW (1970) Functional significance of isoenzymes in thermal ac- climitization. Acetylcholinesterase from the trout brain. Biochem J 116: 833–883.Google Scholar
  6. Baldwin J (1971) Adaptation of enzymes to temperature: Acetylcholinesterases in the central nervous system of fishes. Comp Biochem Physiol 40B (1): 181–187.CrossRefGoogle Scholar
  7. Banschabach MW, Hokin-Neaverson M (1980) Acetylcholine promotes the synthesis of prostaglandin E in mouse pancreas. FEBS Lett 117 (1): 131–133.CrossRefGoogle Scholar
  8. Banschabach MW, Gieson RL, Hokin-Neaverson M (1981) Effects of cholinergic stimulation on levels and fatty acid composition of diacylglycerols in mouse pancreas. Biochem Biophys Acta 663 (3): 34–45.Google Scholar
  9. Baslow MH, Nigrelli RF (1961) Muscle acetylcholinesterase levels as an index of general activity in fishes. Copeia 1961 (1): 8–11.CrossRefGoogle Scholar
  10. Bern G (1961) Functions of chemical transmitters of the autonomic nervous system. Nauka, Moscow.Google Scholar
  11. Bocquene G, Galgani F, Truquet P (1990) Characterization and assay conditions for use of AChE activity from several marine species in pollution monitoring. Mar Environ Res 30: 75–89.CrossRefGoogle Scholar
  12. Bogolyubova GM, Karpinskaya Ye V, Kulikova AI, Rozengart VI (1972) Substrate specificity of cholinesterase of the visual ganglia of the Pacific Ocean squid and acetylcholinesterase of bovine erythrocytes. Biochemiya 37 (4): 826–833.Google Scholar
  13. Brestkin AP, Pevzner DL (1971) Properties of acetycholinesterase of the brain and bovine erythrocytes. Biochemiya 36 (1): 81–87.Google Scholar
  14. Brestkin AP, Brick IL, Grigor’eva GM (1973) Comparative pharmacology of cholinesterases. In: Michelson MJ (ed) Comparative pharmacology. Pergamon, London, pp. 241–344.Google Scholar
  15. Brik IL, Jakovlev VA (1962) Comparative study of cholinesterase properties in the nervous system of vertebrates and insects. Biochemiya 27 (6): 993–1003.Google Scholar
  16. Brik IL (1969) Properties of acetylcholinesterase of the carp brain. Biochemiya 34 (1): 90–95.Google Scholar
  17. Brik IL (1973) Muscle cholinesterases of sea worms Physcosoma japonicum and Lumbriconersis impatiens. In: Biochemical evolution. Nauka, Leningrad, pp 56–67.Google Scholar
  18. Brodbeck U, Gentinetta R, Lundin SJ (1973) Multiple forms of a cholinesterase from body muscles of plaice (Pleuronectes platessa) and possible role of sialic acid in cholinesterase reaction specificity. Acta Chem Scand 27 (2): 561–572.PubMedCrossRefGoogle Scholar
  19. Bull G, Hebb C, Ratkovic D (1961) Cholineacetylase in the human placenta at different stages of development. Nature 190 (4782): 1202.CrossRefGoogle Scholar
  20. Buznikov GA (1967) Low-molecular regulators of embryonal development. Nauka, Moscow.Google Scholar
  21. Chuyko GM, Kozlovskaya VI, Stepanova VM (1983) Esterases of carbonic acid esters of the blood serum of zope (Abramis ballerus), roach (Rutilus rutilus), bream (Ab-ramis brama) and perch (Perca fluviatilis). Depon. VINITI, No 6193–83.Google Scholar
  22. Chuyko GM (1985) Sensitivity of brain acetylcholinesterase to dipterex and its toxicity for roach, bream, carp and perch. Biol Inland Waters Inform Bull No 66, Nauka, Leningrad.Google Scholar
  23. Coppage DL (1971) Characterization of fish brain acetylcholinesterase with an automated pH-stat for inhibition studies. Bull Environ Contam Toxicol 6 (4): 304–310.PubMedCrossRefGoogle Scholar
  24. Coppage DL (1972) Organophosphate pesticides: Specific level of brain AChE inhibition related to death in sheepshead minnows. Trans Am Fish Soc 101 (3): 534–536.CrossRefGoogle Scholar
  25. Coppage DL, Matthews E, Cook GH, Knight J (1975) Brain acetylcholinesterase inhibition in fish as a diagnosis of environmental poisoning by malathion 0,0dimethyl S-(1,2-dicarbethoxyethyl) phosphorodithioate. Pestic Biochem Physiol 5: 536–542.CrossRefGoogle Scholar
  26. Coppage DL, Braidech TE (1976) River pollution by anticholinesterase agents. Water Res 10 (1): 19–24.CrossRefGoogle Scholar
  27. Czubaj A (1979) Ultrastructural distribution of AChE in Catenula leptocephala (Nuttycomb, 1956). Histochem 61 (2): 189–198.CrossRefGoogle Scholar
  28. Day KE, Scott IM (1990) Use of acetylcholinesterase activity to detect sublethal toxicity in stream invertebrates exposed to low concentrations of organophosphate insecticides. Aquat Toxicol 18: 101–114.CrossRefGoogle Scholar
  29. de Bruijn J, Yedema E, Seinen W, Hermens J (1991) Lethal body burdens of four organophosphorous pesticides in the guppy (Poecilia reticulata). Aquat Toxicol 20: 111–122.CrossRefGoogle Scholar
  30. Desai AK (1978) Distribution of cholinesterase in the liver and stomach of the migratory fish Hilsa ilisha and non-migratory Hilsa toli. J An Morphol Physiol 25 (1–2): 124–131.Google Scholar
  31. Dettbarn WD, Rosenberg P (1962) Acetylcholinesterase in aplysia. Biochem Biophys Acta 65 (3): 362–363.CrossRefGoogle Scholar
  32. Dettbarn WD (1963) Hydrolysis of choline esters by invertebrate nerve fibers. Biochem Biophys Acta 77 (3): 430–435.PubMedCrossRefGoogle Scholar
  33. Dikson M, Webb E (1982) Enzymes. Nauka, Moscow.Google Scholar
  34. Edwards G (197la) Normal brain cholinesterase activity in the white perch. Edge-wood Arsenal Tech Rept 4524. Edgewood Arsenal, MD.Google Scholar
  35. Edwards G (1971b) Normal brain cholinesterase activity in the pumpkin seed sunfish. Edgewood Arsenal Tech Rept 4538. Edgewood Arsenal, MD.Google Scholar
  36. Engels H, Neef J, von Wachtendonk D (1978) Preparation and properties of acetyl-cholinesterase from the sea mussel Mytilus edulis. Hoppe-Seyler’s Z Physiol Chem 359 (12): 1783–1795.PubMedCrossRefGoogle Scholar
  37. Erzen J, Brzin M (1979) Cholinergic mechanisms in Planaria torva. Comp Biochem Physiol 64c (1): 207–216.Google Scholar
  38. Fominykh M Ya (1976) Cholinergic motor endings in muscle fibers of polychaeta Nephtys hombrgii. In: Comparative neurophysiology and neurochemistry. Nauka, Leningrad, pp 33–43.Google Scholar
  39. Gazso LR, Torok L, Rappay G (1961) Contribution to the histochemistry of the nervous system of the planarians. Acta Biol Acad Sci Hung II (4): 411–428.Google Scholar
  40. Ger BA, Dardymov IV, Lavrent’eva VV, Mikhel’son M Ya (1970) Pharmacological characteristics of some muscles of sipunculoidea and annelids. J Evol Biochem Physiol 6 (2): 187–197.Google Scholar
  41. Gibson JR, Ludke JL, Ferguson DE (1969) Sources of error in the use of fish-brain acetylcholinesterase activity as a monitor for pollution. Bull Environ Contam Toxicol 4 (1): 17–23.CrossRefGoogle Scholar
  42. Golikov SN, Rozengart VI (1964) Cholinesterases and anticholinesterase substances. Nauka, Leningrad.Google Scholar
  43. Grigor’eva GM (1966) Cholinesterases of visual ganglion of the squid Illex illecebrosus, cuttlefish Sepia officinalis and Eledone eledone moshata (Cephalopoda). In: Comparative neurophysiology and neurochemistry. Nauka, Leningrad, pp 3–13.Google Scholar
  44. Grigor’eva GM, Rozengart Ye V, Turpayev TM (1968) Characteristics of specificity of cholinesterases of cardiac muscle and hemolymph of mollusks. In: Physiology and biochemistry of invertebrates. Nauka, Leningrad, pp 166–175.Google Scholar
  45. Grigor’eva GM (1969) Cholinesterases of the visual ganglion of the Octopus octopus sp. and the squid Ommatostrephes sloanei-pacificus. In: Enzymes in the evolution of animals. Nauka, Leningrad, pp 177–184.Google Scholar
  46. Grigor’eva GM, Tkachenko SS (1971) Cholinesterases of the hemolymph of gastropod mollusks. J Evol Biochem Physiol 7 (3): 254–261.Google Scholar
  47. Grigor’eva GM (1973) Propionylcholinesterase in the nervous ganglia of the freshwater pulmonate mollusk Lymnaea stagnalis. Comp Biochem Physiol 44a: 1341–1342.CrossRefGoogle Scholar
  48. Grigor’eva GM, Konycheva NV (1977) Catalytic properties of cholinesterases of the visual ganglion of squid. In: Physiology and biochemistry of sea and freshwater animals. Nauka, Leningrad, pp 194–204.Google Scholar
  49. Grinberg M Zh, Rup T (1977) Diversity of cholinesterases in homologous tissues of bivalve mollusks. In: Comparative pharmacology of synaptic receptors. Nauka, Leningrad, pp 127–137.Google Scholar
  50. Harwitz L, Weissinger J (1980) Effects of variations of extracellular acetylcholine and calcium ion concentration on the operation level of calcium channels in intestinal smooth muscle. J Pharmacol Exp Ther 214 (3): 581–588.Google Scholar
  51. Hawkins RD, Mendel B (1946) True cholinesterase with pronounced resistance to eserine. J Cell Comp Physiol 27 (1): 69–85.CrossRefGoogle Scholar
  52. Hobden BR, Klaverkamp JF (1977) A pharmacological characterization of acetyl-cholinesterase from rainbow trout (Salmo gairdneri) brain. Comp Biochem Physiol 57c: 131–133.Google Scholar
  53. Hogan JW, Knowles CO (1968) Some enzymatic properties of brain acetylcholinesterase from bluegill and channel catfish. J Fish Res Bd Can 25 (4): 615–623.CrossRefGoogle Scholar
  54. Hogan JW (1971a) Brain acetylcholinesterase from cutthroat trout. Trans Am Fish Soc 100 (4): 672–675.CrossRefGoogle Scholar
  55. Hogan JW (1971b) Some enzymatic properties of plasma esterases from channel catfish (Ictalurus punctatus). J Fish Res Bd Can 28 (4): 613–616.CrossRefGoogle Scholar
  56. Hunt R, Taveaux R deM (1906) On the physiological action of certain choline derivatives and new methods for detecting choline. Brit Med J 11: 1788–1791.Google Scholar
  57. Jakovlev VA (1965) The kinetics of enzymatic catalysis. Nauka, Moscow.Google Scholar
  58. Johnson JA, Wallace KB (1987) Species-related differences in the inhibition of brain acetylcholinesterase by paraoxon and malaoxon. Toxicol Appl Pharmacol 88: 234–241.PubMedCrossRefGoogle Scholar
  59. Jurchenko OP’, Vul’fius Ye A, Zeymall EV (1973) Cholinesterase activity in ganglia of gastropoda, Lymnaea stagnalis and Planorbis corneus. I. Effect of anticholinesterase agents of giant neuron depolarization by acetylcholine and its analogs. Comp Biochem Physiol 45a (1): 45–60.CrossRefGoogle Scholar
  60. Kabachnik MJ, Brestkin AP, Godovikov NN, Michelson MJ, Rozengart EV, Rosengart VI (1970) Hydrophobic areas on the active surface of cholinesterases. Pharmacol Rev 22: 355–388.PubMedGoogle Scholar
  61. Kartashova NV, Panyukov AN, Pevzner DL, Rozengart VI, Rozengart Ye V, Sakharov DA (1968) Cholinesterase of visual ganglia of squid Ommatostrephes sloanei-pacificus. In: Physiology and biochemistry of vertebrates. Nauka, Leningrad, pp 121–130.Google Scholar
  62. Kemp JR, Wallace KB (1990) Molecular determinants of the species-selective inhbition of brain acetylcholinesterase. Toxicol Appl Pharmacol 104: 246–258.PubMedCrossRefGoogle Scholar
  63. Korochkin LI, Serov OL, Pudovkin AI, Aronshtam AA, Borkin L Ya, Maleckiy SI, et al. (1977) Genetics of isoenzymes. Nauka, Moscow.Google Scholar
  64. Kovalev NN, Rozengart EV (1987) Interaction of reversible inhibitors with cholinesterase from the squid Berryteuthis magister from various habitats. J Evol Biochem Physiol 23: 548–550.Google Scholar
  65. Kozlovskaya VI, Chuyko GM (1979) Blood serum cholinesterases of fish of the cyprinidae family with varying resistance to dipterex. In: Physiology and parasitology of freshwater animals. Nauka, Leningrad, pp 32–41.Google Scholar
  66. Kozlovskaya VI, Flerov BA (1981) Organophosphorus pesticides and their danger for aquatic animals. In: Butorin NV, Flerov BA, Lukiyanenko VI, Umorin PP (eds) Theoretical aspects of aquatic toxicology. Nauka, Leningrad, pp 77–87.Google Scholar
  67. Kozlovskaya VI, Komov VT, Volkova TV (1982) Cholinesterase of the nerve ganglia of gastropod mollusks having varying resistance to dipterex. Biol Inland Waters Inform Bull, 54: 36–38.Google Scholar
  68. Kozlovskaya VI, Menzikova OV, Chuyko GM (1985) Comparative resistance of aquatic animals to organophosphorus pesticides. Experimental Aquatic Toxicology, 10: 88–95.Google Scholar
  69. Kozlovskaya VI, Menzikova OV (1986) Cholinesterase of the nerve ganglia of Lymnaea stagnalis. Depon VINITI, No 6528 - B86.Google Scholar
  70. Lentz TL (1968) Histochemical localization of acetylcholinesterase activity in a planarian. Comp Physiol 27 (3): 715–718.Google Scholar
  71. Leybson NL (1963) Acetylcholinesterase of the brain in phylogenesis of vertebrates. Dokl Akad Nauk SSSR 153 (6): 1435–1438.Google Scholar
  72. Lim R, Davis GA, Agranoff BW (1971) Electrophoretic studies on solubilized proteins of goldfish brain. Brain Res 25: 121–131.PubMedCrossRefGoogle Scholar
  73. Loe PR, Florey E (1956) The distribution of acetylcholine and cholinesterase in the nervous system and innovative organs of Octopus dofleini. Comp Biochem Physiol 17 (2): 509–522.Google Scholar
  74. Ludtke AN, Ohnesorge FK (1966) Cholinesterases in various tissues of the schleic (Tinca vulgaris) and of rabbits. Zeitschrift fuer vergl Physiologie 52 (3): 260–275.CrossRefGoogle Scholar
  75. Lundin SJ (1958) On the localization of cholinesterase in fish. Experientia 14 (4): 131–132.PubMedCrossRefGoogle Scholar
  76. Lundin SJ (1959) Acetylcholinesterase in goldfish muscles. Studies on some substrates and inhibitors. Biochem J 72 (2): 210–214.PubMedGoogle Scholar
  77. Lundin SJ (1962) Comparative studies of cholinesterase in body muscles of fish. J Cell Comp Physiol 59 (2): 93–105.PubMedCrossRefGoogle Scholar
  78. Lundin SJ (1968) Properties of a cholinesterase from body muscles of plaice (Pleuronectes platessa). Acta Chem Scand 22 (7): 2183–2190.PubMedCrossRefGoogle Scholar
  79. Malachov VV, Belova SL (1977) Distribution of cholinesterase activity of nervous system of freely living sea nematode Pontonena vulgare. J Evol Biochem Physiol 13 (5): 638–639.Google Scholar
  80. Malyarevskaya A Ya (1979) Metabolism in fish with anthropogenic eutrophication of reservoirs. Nauka, Kiev.Google Scholar
  81. Mayer FL, Ellersieck MR (1986) Manual of acute toxicity: Interpretation and data base for 410 chemicals and 66 species of freshwater animals. U.S. Fish and Wildlife Service, resource publ 160, Washington, DC.Google Scholar
  82. Mayer FL, Versteeg DJ, McKee MJ, Folmar LC, Graney RL, McCume DC, Rattner BA (1992) Physiological and nonspecific biomarkers. In: Huggett RJ, Kimerle RA, Mehrle PM, Bergman HL (eds) Biomarkers—biochemical, physiological, and histological markers of anthropogenic stress. Lewis Publ, Boca Raton, FL, pp 5–85.Google Scholar
  83. Maynard EA (1964) Esterases in crustacean nervous system. J Exp Zool 157: 251–266.PubMedCrossRefGoogle Scholar
  84. McHenery JG, Saward D, Seaton DD (1991) Lethal and sub-lethal effects of the salmon delousing agent dichlorvos on the larvae of the lobster (Homarus gamma-rus L.) and herring (Clupea harengus L.). Aquaculture 98: 331–347.CrossRefGoogle Scholar
  85. Metelev VV, Trostina VI (1969) Enzymatic methods of indicating OPC in fish and water. Bull All-Union Inst Exp Vet 6: 60–63.Google Scholar
  86. Michel’son MY, Zemal’ EV (1970) Acetylcholine. Nauka, Leningrad.Google Scholar
  87. Michkieva VS, Bogdan VV, (1978) Determining activity of cholinesterase in muscle and nerve tissues of freshwater fish. In: Ecological biochemistry of animals. Nauka, Petrozavodsk, pp 97–103.Google Scholar
  88. Murphy SD, Lauwerys RR, Cheever KA (1968) Comparative anticholinesterase action of organophosphorus insecticides in vertebrates. Toxicol Appl Pharmacol 12: 22–35.PubMedCrossRefGoogle Scholar
  89. Nachmansohn D, Rothenberg MA, (1945) Studies on cholinesterase: I. On the specificity of the enzyme in nerve tissue. J Biol Chem 158:653–667. Nachmansohn D ( 1959 ) Chemical and molecular basis of nerve activity. Academic Press, London.Google Scholar
  90. Nachmansohn D (1964) Outlook for studying molecular fundamentals of nerve activity. In: Molecular biology. Problems and outlook. Nauka, Moscow, pp 282–303.Google Scholar
  91. Nemcsok J, Rakonczay Z, Kasa P, Asztalos B, Szabo A (1990) Effects of methidathion on distribution of molecular forms of acetylcholinesterase in carp, as revealed by density gradient centrifugation. Pestic Biochem Physiol 37: 145–153.CrossRefGoogle Scholar
  92. Nimierko S, Skangiel-Kramaska J, Mleczko M, Rakusa-Suszczewski S (1977) The effect of the assay temperature on brain acetylcholinesterase activity of two antarctic fish species. Bull Acad Pol Sci Ser Sci Biol 25 (12): 821–825.Google Scholar
  93. Nomenclature of enzymes (1979). Nauka, Moscow.Google Scholar
  94. O’Brien R (1960) Toxic phosphorus esters. Academic Press, New York.Google Scholar
  95. Panyukov AN (1963) Role of nonspecific cholinesterase in the brain. In: Summaries of reports of First All-Union Biochemical Congress, vol 2. Moscow-Leningrad, pp 134–135.Google Scholar
  96. Portugalova VV, Jakovlev VA (1953) Cholinesterases and anticholinesterase substances. Asp Med Chem 5: 188–192.Google Scholar
  97. Potapenko RI (1980) Effect of acetylcholine on Na, K-ATP-ase of the brain microsomes of rats of different age. Bull Exp Biol Med 90 (12): 677–678.Google Scholar
  98. Rath S, Misra BN (1981) Toxicological effects of dichlorovos (DDVP) on brain and liver acetylcholinesterase (AChE) activity of Tilapia mossambica. Toxicology 19: 239–245.PubMedCrossRefGoogle Scholar
  99. Richardson SB, Hollanger CS, D’Eletto R, Greenleaf PW, Thaw C (1980) Acetylcholine inhibits the release of somatostatin from rat hypothalamus in vitro. Endocrinology 107 (1): 122–129.PubMedCrossRefGoogle Scholar
  100. Rozengart EV, Vinyar TN, Kovalev NN, Khovanskikh AE (1988) Specificity of interaction of cholinesterases from Far East squids and some vertebrates with reversible inhibitors. J Evol Biochem Physiol 24: 679–685.Google Scholar
  101. Rozengart VI (1973) Cholinesterases. Functional role and clinical value. In: Problems of medical chemistry. Nauka, Moscow, pp 66–106.Google Scholar
  102. Rozengart VI, Sherstobitov O Ye (1978) Selective toxicity of organophosphorus insecticides. Nauka, Leningrad.Google Scholar
  103. Salanki J, Hiripi L, Labos E (1966) Cholinesterase activity in the central nervous system of Anodonta cygnea L. Ann Biol Tihany 33: 143–150.Google Scholar
  104. Salanki J, Varanka I, Hiripi L (1967) Comparative study on the cholinesterase activity of different tissues of freshwater mussel (Anodonta cygnea L). Ann Biol Tihany 34: 96–116.Google Scholar
  105. Shevzova SP, Brestkin AP, Nesis KN, Rozengart Ye V (1977) Identity of cholinesterase properties of the visual ganglion of squid Ommastrephes bartrami from the South Atlantic and the larger Australian Gulf. Okeanologiya 17 (6): 1102–1105.Google Scholar
  106. Shevzova SP, Brestkin AP, Nesis KN, Rozengart Ye V (1979) Differences in cholinesterase properties of visual ganglia of squid Ommastrephes bartrami (Les) as an indicator of population isolation from different parts of a separated geographic range. Okeanologiya 19 (3): 481–485.Google Scholar
  107. Sugden PH, Newsholme EA (1977) Activities of choline acetyltransferase, acetyl-cholinesterase, glutimate decarboxylase, 4-aminobutyrate amino transferase and carnitine acetyltransferase in nervous tissue from some vertebrates and invertebrates. Comp Biochem Physiol 560: 89–94.Google Scholar
  108. Szabo A, Nemcsok J, Asztalos B, Rakonczay Z, Kasa P, Hieu LH (1992) The effect of pesticides on carp (Cyprinus carpio L). Acetylcholinesterase and its biochemical characterization. Ecotoxicol Environ Saf 23: 39–45.PubMedCrossRefGoogle Scholar
  109. Thompson RHS (1953) Cholinesterase. Brit Med Bull 9 (2): 138–141.PubMedGoogle Scholar
  110. Tiras Ch P, Sacharova N Yu, Sheyman IM (1975) Activity of acetylcholinesterase in nervous system of some triclads (class of ciliate worms). J Evol Biochem Physiol 11 (4): 427–429.Google Scholar
  111. Tiras Ch P (1978) Activity of acetylcholinesterase in the nervous system of planaria normally and during regeneration. Ontogenez 9 (3): 262–268.PubMedGoogle Scholar
  112. van der Wel H, Welling W (1989) Inhibition of acetylcholinesterase in guppies Poecilia reticulata by chlorpyrifos at sublethal concentrations methodological aspects. Ecotoxicol Environ Saf 17: 205–215.PubMedCrossRefGoogle Scholar
  113. Varanka J (1968) Biochemical investigation of cholinesterase in the central nervous system of Lymnaea stagnalis L. (Gastropoda). Ann Biol Tihany 35: 93–107.Google Scholar
  114. Vul’fius Ye A, Jurchenko OP, Zeymall EV (1969) Mutual arrangement of cholinoreceptors on the neuronal membrane of gastropod mollusks and cholinesterase activity of neurons. Dokl Acad Nauk SSSR 186 (6): 1445–1448.Google Scholar
  115. Vul’fius Ye A, Jurchenko OP (1972) Effect of anticholinesterase substances on the action of acetylcholine and its analogs on neurons of gastropod mollusks. Dokl Acad Nauk SSSR 205 (5): 1254–1257.Google Scholar
  116. Walday P, Fonnum F (1989) A comparative pharmacological characterization of cholinesterases in salmon (Salmo salar) brain and sealice (Lepeophtheirus salmonis). Comp Biochem Physiol 92C: 197–199.CrossRefGoogle Scholar
  117. Wallace KB, Herzberg U (1988) Reactivation and aging of phosphorylated brain acetylcholinesterase from fish and rodents. Toxicol Appl Pharmacol 92: 307–314.PubMedCrossRefGoogle Scholar
  118. Weiss C (1958) The determination of cholinesterase in brain tissue of three species of freshwater fish and its inactivation in vivo. Ecology 39 (2): 194–199.CrossRefGoogle Scholar
  119. Wilder WH (1970) Histochemical localization of cholinesterase in larvae of Culisetainornata (Diptera: Culicidae). Ann Entomol Soc Am 63: 1620–1624.Google Scholar
  120. Williams AK, Soya CR (1966) Acetylcholinesterase level in brains of fish from polluted waters. Bull Environ Contam Toxicol 1: 198–204.CrossRefGoogle Scholar
  121. Winners W, Neef J, von Wachtendonk D (1978) Distribution of cholinesters and cholinesterases in haemolymphs and smooth muscles of mollusks. Comp Biochem Physiol c61 (1): 121–131.Google Scholar
  122. Zech R, Engelhart H (1967) Acetylcholinesterase activity in the serum of electric eel. Hoppe-Seyler’s Z Physiol Chemie 347: 735–736.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1993

Authors and Affiliations

  • V. I. Kozlovskaya
    • 1
  • F. L. Mayer
    • 2
  • O. V. Menzikova
    • 1
  • G. M. Chuyko
    • 1
  1. 1.Institute of Biology of Inland Waters Academy of ScienceBorok, JaroslavlRussia
  2. 2.U.S. Environmental Protection AgencyEnvironmental Research LaboratoryGulf BreezeUSA

Personalised recommendations