Advertisement

Interactions between insecticides and soil microbes

  • C. M. Tu
  • J. R. W. Miles
Part of the Residue Reviews book series (RECT, volume 64)

Abstract

The widespread use of insecticides over the past 30 years has resulted in problems caused by their interaction with natural biological systems. The complex interrelationship of these systems is illustrated in Figure 1. A problem due to contamination by residues may appear far removed from the initial point of introduction into the environment. For example, while some insecticides are intentionally applied directly to the soil to control soil insects, the soil is also a repository for chemicals from drift during foliar application, plant residues containing insecticides and their degradation products, and chemicals deposited by atmospheric precipitation. The persistence of insecticides and their degradation products depends on how deeply they are mixed into the soil; even the most persistent compounds disappear relatively quickly when on the soil surface, yet when incorporated into the soil they are very persistent (Edwards 1966). Generally insecticide residues will occur in the top 6 in. of soil (Chisholm et al. 1950, Harris and Sans 1969, Lichtenstein et al. 1962). This is also the region of greatest activity of soil fauna and flora (Alexander 1961), thus setting the stage for interaction of insecticide residues with the fauna and flora of the soil ecosystem. Recent monographs have considered the effects of insecticides on soil fauna (Edwards and Thompson 1973) and aquatic microorganisms (Ware and Roan 1970).

Keywords

Soil Microorganism Soil Microbe Methyl Parathion Soil Microflora Heptachlor Epoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, M. K., and J. E. Casida: Metabolism of some organophosphorus insecticides by microorganisms. J. Econ. Entomol. 51, 59 (1958).Google Scholar
  2. Albone, E. S., G. Eglinton, N. C. Evans, J. M. Hunter, and M. M. Rhead: Fate of DDT in Severn estuary sediments. Environ. Sci. Technol. 6, 914 (1972).CrossRefGoogle Scholar
  3. Alexander, M.: Introduction to soil microbiology. New York: Wiley (1961). Biodegradation: Problems of molecular recalcitrance and microbial fallibility. Adv. Applied Microbiol. 1, 35 (1965).CrossRefGoogle Scholar
  4. Alexander, M.: Degradation of pesticides by soil bacteria. In T. R. G. Gray and D. Parkinson (ed.): Ecology of soil bacteria. Toronto: Univ. of Toronto (1968).Google Scholar
  5. Allan, J.: Loss of biological efficiency of cattle-dipping wash containing benzene hexachloride. Nature 175, 1131 (1955).PubMedCrossRefGoogle Scholar
  6. Anderson, J. P. E., and E. P. Lichtenstein: Effect of nutritional factors on DDT-degradation by Mucor alternans. Can. J. Microbiol. 17, 1291 (1971).PubMedCrossRefGoogle Scholar
  7. Anderson, J. P. E., and E. P. Lichtenstein: Effects of various soil fungi and insecticides on the capacity of Mucor alternans to degrade DDT. Can. J. Microbiol. 18, 553 (1972).PubMedCrossRefGoogle Scholar
  8. Anderson, J. P. E., and W. F. Whittingham: Effect of Mucor alternans on the persistence of DDT and dieldrin in culture and in soil. J. Econ. Entomol. 63, 1595 (1970).PubMedGoogle Scholar
  9. Armstrong, D. E., and J. G. Konrad: Nonbiological degradation of pesticides. In R. C. Dinaver (ed.): Pesticides in soil and water, p. 123. Madison, Wis.: Soil Sci. Soc. Amer. (1974).Google Scholar
  10. Azad, M. I., and A. A. Khan: Studies upon the reduction of nitrogen losses through denitrification from paddy soil by the application of pesticides. W. Pakistan J. Agr. Research 6, 128 (1968).Google Scholar
  11. Bache, C. A., and D. J. Llsx: Determination of oxidative metabolites of dimethoate and Thimet in soil by emission spectroscopic gas chromatography. J. Assoc. Official Anal. Chemists 49, 647 (1966).Google Scholar
  12. Bailey, G. W., and J. L. White: Factors influencing the adsorption, desorption, and movement of pesticides in soil. Residue Reviews 32, 29 (1970).PubMedGoogle Scholar
  13. Baluja, G., and M. A. Murado: Metabolism of aldrin by Penicillium glaucum. In A. S. Tahori (ed.): Pesticide chemistry. Proc. 2nd Internat. IUPAC Congress of Pest. Chem., Vol. 6, p. 273. Netherlands—New York—London: Gordon and Breach (1972).Google Scholar
  14. Bann, J. M., T. J. Decino, N. W. Earle, and Y. P. Sun: The fate of aldrin and dieldrin in the animal body. J. Agr. Food Chen. 4, 937 (1956).CrossRefGoogle Scholar
  15. Bardiya, M. C., and A. C. Gaur: Influence of insecticides on CO, evolution from soil. Indian J. Microbiol. 8, 233 (1968).Google Scholar
  16. Bardiya, M. C., and A. C. Gaur: Effect of some chlorinated hydrocarbon insecticides on nitrification in soil. Zentbl. Bakt. Parasitkde Abt. I I, 124, 552 (1970).Google Scholar
  17. Barker, P. S., and F. O. Morrison: The metabolism of TDE by Proteus vulgaris. Can. J. Zool. 43, 652 (1965).PubMedCrossRefGoogle Scholar
  18. Bartha, R., R. P. Lanzilotta, and D. Pramer: Stability and effects of some pesticides in soil. Applied Microbiol. 15, 67 (1967).Google Scholar
  19. Barthel, W. F., R. T. Murphy, and C. Corley: Insecticides residues. The fate of heptachlor in the soil following granular application to the surface. J. Agr. Food Chem. 8, 445 (1960).CrossRefGoogle Scholar
  20. Benezet, H. J., and F. Matsumura: Isomerization of ry-BHC to a-BHC in the environment. Nature 243, 480 (1973).CrossRefGoogle Scholar
  21. Bixby, M. W., G. M. Bouses, and F. Matsumura: Degradation of dieldrin to carbon dioxide by a soil fungus Trichoderma koningi. Bull. Environ. Contam. Toxicol. 6, 491 (1971).PubMedCrossRefGoogle Scholar
  22. Bollag, J. M., and S. Y. Lw: Degradation of Sevin by soil microorganisms. Soil Biol. Biochem. 3, 337 (1971).Google Scholar
  23. Bollag, J. M., and S. Y. Lw: Hydroxylations of carbaryl by soil fungi. Nature 236, 177 (1972 a).Google Scholar
  24. Bollag, J. M., and S. Y. Lw: Fungal degradation of 1-naphthol. Can. J. Microbiol. 18, 113 (1972 b).Google Scholar
  25. Bollen, W. B.: Interactions between pesticides and soil microorganisms. Ann. Rev. Microbiol. 15, 69 (1961).CrossRefGoogle Scholar
  26. Bollen, W. B., and C. M. Tu: Influence of endrin on soil microbial populations and their activity. U.S. Dept. Agr. Forest Serv. Res. Paper PNW-114, 4 p. (1971).Google Scholar
  27. Bollen, W. B., K. C. Lu, and R. F. Tarrant: Effect of Zectran on microbial activity in a forest soil. U.S. Dept. Agr. Forest Serv. Res. Note, PNW-124, 10 p. (1970).Google Scholar
  28. Bollen, W. B., J. E. Roberts, and H. E. Morrison: Soil properties and factors influencing aldrin-dieldrin recovering and transformation. J. Econ. Entomol. 51, 214 (1958).Google Scholar
  29. Bonderman, D. P., and E. Slach: Appearance of 1-hydroxychlordene in soil, crops, and fish. J. Agr. Food Chem. 20, 328 (1972).CrossRefGoogle Scholar
  30. Bourquin, A. W. J.: Microbial interactions with cyclodiene pesticides. Ph.D. Thesis, Univ. of Houston (1971).Google Scholar
  31. Bousn, G. M., and F. Matsumura: Insecticidal degradation by Pseudomonas melophthora, the bacterial symbiote of the apple maggot. J. Econ. Entomol. 60, 918 (1967).Google Scholar
  32. Bowman, M. C., H. C. Young, and W. F. Barthel: Minimal concentrations of aldrin, dieldrin, and heptachlor in soil for control of white-fringed beetles as determined by parallel gas chromatographic and biological assays. J. Econ. Entomol. 58, 896 (1965).Google Scholar
  33. Braithwaite, B. M., A. E. Jane, and F. G. Swain: Effect of insecticides on sod-sown sub-clovers. J. Austral. Inst. Agr. Sci. 24, 155 (1958).Google Scholar
  34. Bro-Rasmussen, F., E. Noddegaard, and K. Voldum-Clausen: Degradation of diazinon in soil. J. Sci. Food Agr. 19, 278 (1968).CrossRefGoogle Scholar
  35. Burge, W. D.: Anaerobic decomposition of DDT in soil. Acceleration by volatile components of alfalfa. J. Agr. Food Chem. 19, 375 (1971).CrossRefGoogle Scholar
  36. Caro, J. H., H. P. Freeman, D. W. Glotfelty, B. C. Turner, and W. M. Edwards: Dissipation of soil-incorporated carbofuran in the field. J. Agr. Food Chem. 21, 1010 (1973).CrossRefGoogle Scholar
  37. Carter, F. L., and C. A. Stringer: Residues and degradation products of technical heptachlor in various soil types. J. Econ. Entomol. 63, 625 (1970).PubMedGoogle Scholar
  38. Carter, F. L., and D. Heinzelman: 1-Hydroxy-2,3-epoxychlordene in Oregon soil pre- viously treated with technical heptachlor. Bull. Environ. Contam. Toxicol. 6, 249 (1971).PubMedCrossRefGoogle Scholar
  39. Chacko, C. I., and J. L. Lockwood: Accumulation of DDT and dieldrin by microorganisms. Can. J. Microbiol. 13, 1123 (1967).PubMedCrossRefGoogle Scholar
  40. Chacko, C. I., and M. Zabik: Chlorinated hydrocarbon pesticides: Degradation by microbes. Science 154, 893 (1966).CrossRefGoogle Scholar
  41. Champ, B. R.: Protecting stored cereal seed from pests. Queensland Agr. J. 91, 449 (1965).Google Scholar
  42. Champ, B. R., D. I. Sillar, and H. J. Lavery: Seed harvesting and control in the Cloncurry district. Queensland J. Agr. Sci. 18, 257 (1961).Google Scholar
  43. Chandra, P.: Effect of two chlorinated insecticides on soil microflora and nitrification process as influenced by different soil temperatures and textures. In O. Graff and J. E. Satchell (ed.): Progress in soil biology, p. 320.Google Scholar
  44. Chisholm, R. D., L. K. Koblitzky, T. E. Fahey, and W. E. Westlake: DDT residues in soil. J. Econ. Entomol. 43, 941 (1950).Google Scholar
  45. Collins, J. A., and B. E. Langlois: Effect of DDT, dieldrin, and heptachlor on the growth of selected bacteria. Applied Microbiol. 16, 799 (1968).Google Scholar
  46. Cope, O. B.: Agricultural chemicals and fresh-water ecological systems. In C. O. Chichester (ed.): Research in pesticides, p. 115. New York: Academic Press (1965).Google Scholar
  47. Cowley, G. T., and E. P. Lichtenstein: Growth inhibition of soil fungi by insecticides and annulment of inhibition of yeast extract or nitrogenous nutrients. J. Gen. Microbiol. 62, 27 (1970).Google Scholar
  48. Crosby, D. G.: Experimental approach to pesticide photodecomposition. Residue Reviews 25, 1 (1969).PubMedGoogle Scholar
  49. Crosby, D. G.: The nonbiological degradation of pesticides in soils. In: Pesticides in the soil: Ecology, degradation and movement. Internat. Symp. on Pesticides in the Soil, p. 86. East Lansing: Mich. State Univ. (1970).Google Scholar
  50. Dazzio, J. A.: Microbial degradation of endrin. Ph.D. Thesis, Louisiana State Univ. (1967).Google Scholar
  51. Derby, S. B., and E. Riser: Primary production: depression of oxygen evolution in algal cultures by organophosphorus insecticides. Bull. Environ. Contam. Toxicol. 5, 553 (1970).CrossRefGoogle Scholar
  52. Diatloff, A.: The effects of some pesticides on root nodule bacteria and subsequent nodulation. Austral. J. Expt. Agr. Animal Husbandry 10, 562 (1970).CrossRefGoogle Scholar
  53. Domscn, K. H.: Einflüsse von Pflanzenschutzmitteln auf die Bodenmikroflora. Mitteril. Biolog. Bunds. Land-und Forstwirt. Berlin-Daklem. 107, 1052 (1963).Google Scholar
  54. Domscn, K. H.: Soil fungicides. Ann. Review Phytopathol. 2, 293 (1964).CrossRefGoogle Scholar
  55. Domscn, K. H.: Effect of fungicides on microbial populations in soil. In Pesticides in the soil: Ecology, degradation and movement. Internat. Symp. on Pesticides in the Soil, p. 42. East Lansing: Mich. State Univ. (1970).Google Scholar
  56. Dougherty, E. M., C. F. Reichelderfer, and R. M. Faust: Sensitivity of Bacillus thuringiensis var. thuringiensis to various insecticides and herbicides. J. Invert. Pathol. 17, 292 (1971).CrossRefGoogle Scholar
  57. Edwards, C. A.: Insecticide residues in soils. Residue Reviews 13, 83 (1966).CrossRefGoogle Scholar
  58. Edwards, C. A.: Insecticides. In C. A. I. Goring and J. W. Hamaker (ed.): Organic chemicals in the soil environment, Vol. 2, p. 513. New York: Marcel Dekker (1972).Google Scholar
  59. Edwards, C. A., and A. R. Thompson: Pesticides and the soil fauna. Residue Reviews 45, 1 (1973).PubMedGoogle Scholar
  60. Edwards, C. A., S. D. Beck, and E. P. Lichtenstein: Bioassay of aldrin and lindane in soil. J. Econ. Entomol. 50, 622 (1957).Google Scholar
  61. Elliot, J. M., C. F. Marks, and C. M. Tu: Effect of nematicides on Pratylenchus penetrans, soil microflora, and flue-cured tobacco. Can. J. Plant Sci. 52, 1 (1972).CrossRefGoogle Scholar
  62. El-Rafai, A., and T. L. Hopkins: Parathion absorption translocation, and conversion to paraoxon in bean plants. J. Agr. Food Chem. 14, 588 (1966).CrossRefGoogle Scholar
  63. Flashinski, S. J., and E. P. Lichtenstein: Metabolism of Dyfonate by soil fungi. Can. J. Microbiol. 20, 399 (1974 a).Google Scholar
  64. Flashinski, S. J., and E. P. Lichtenstein: Degradation of Dyfonate in soil inoculated with Rhizopus arrhizus. Can. J. Microbiol. 20, 871 (1974 b).Google Scholar
  65. Flashinski, S. J., and E. P. Lichtenstein: Environmental factors affecting the degradation of Dyfonate by soil fungi. Can. J. Microbiol. 21, 17 (1975).PubMedCrossRefGoogle Scholar
  66. Focht, D. D.: Microbial degradation of DDT metabolites to carbon dioxide, water and chloride. Bull. Environ. Contain. Toxicol. 7, 52 (1972).CrossRefGoogle Scholar
  67. Focht, D. D., and M. Alexander: DDT metabolites and analogs ring fission by Hydrogenomonas. Science 170, 91 (1970 a).Google Scholar
  68. Focht, D. D.: Bacterial degradation of diphenylmethane a DDT model substrate. Applied Microbiol. 20, 608 (1970 b).Google Scholar
  69. Focht, D. D.: Aerobic cometabolism of DDT analogues by Hydragenomonas sp. J. Agr. Food Chem. 19, 20 (1971).CrossRefGoogle Scholar
  70. French, A. L., and R. A. Hoopingarner: Dechlorination of DDT by membranes isolated from Escherichia coli. J. Econ. Entomol. 63, 756 (1970).PubMedGoogle Scholar
  71. Garretson, A. L., and C. L. Sanclemente: Inhibition of nitrifying chemolitho- trophic bacteria by several insecticides. J. Econ. Entomol. 61, 285 (1968).PubMedGoogle Scholar
  72. Gaur, A. C., and R. P. Pareek: Effect of dichlorodiphenyltrichloro-ethane (DDT) on leghemoglobin content of root nodules of Phaseolus aureus (green gram). Experientia 25, 777 (1969).PubMedCrossRefGoogle Scholar
  73. Getzin, L. W.: Metabolism of diazinon and Zinophos in soils. J. Econ. Entomol. 60, 505 (1967).Google Scholar
  74. Focht, D. D.: Persistence of diazinon and Zinophos in soil: effects of autoclaving, temperature, moisture, and acidity. J. Econ. Entomol. 61, 1560 (1968).Google Scholar
  75. Focht, D. D.: Persistence and degradation of carbofuran in soil. Environ. Entomol. 2, 461 (1973).Google Scholar
  76. Focht, D. D., and I. Rosefield: Persistence of diazinon and Zinophos in soils. J. Econ. Entomol. 59, 512 (1966).Google Scholar
  77. Focht, D. D.: Organophosphorus insecticide degradation by heat-labile substances in soil. J. Agr. Food Chem. 16, 598 (1968).CrossRefGoogle Scholar
  78. Focht, D. D., and C. H. Shanks, Jr.: Persistence, degradation,“ and bioactivity of phorate and its oxidative analogues in soil. J. Econ. Entomol. 63, 52 (1970).Google Scholar
  79. Gil, I., M. A. Martin, C. Ruano, and F. Aragones: Influence of some pesticides on Azotobacter. Microbiol. espan. 23, 271 (1970).Google Scholar
  80. Ginsburg, J. M., R. S. Filsaer, J. P. Reed, and A. R. Paterson: Recovery of parathion, DDT and certain analogs of dichlorodiphenyl dichloroethane from treated crops. J. Econ. Entomol. 42, 602 (1949).Google Scholar
  81. Glass, B. L.: Relation between the degradation of DDT and the iron redox system in soils. J. Agr. Food Chem. 20, 324 (1972).CrossRefGoogle Scholar
  82. Gray, P. H. H., and C. G. Rogers: Effects of benzenehexachloride on soil microorganisms. IV. Benzenehexachloride-resistant bacteria from virgin soils. Can. J. Microbiol. 1, 312 (1955).PubMedCrossRefGoogle Scholar
  83. Griffin, D. M., and G. Quail: Movement of bacteria in moist particulate systems. Austral. J. Biol. Sci. 21, 579 (1968).Google Scholar
  84. Griffiths, D. C., and N. Walker: Microbiological degradation of parathion. Mededelingen Faculteit Landbouwwetenschappen Gent. 35, 805 (1970).Google Scholar
  85. Guenzi, W. D., and W. E. Beard: Movement and persistence of DDT and lindane in soil columns. Proc. Soil Sci. Soc. Amer. 31, 644 (1967).CrossRefGoogle Scholar
  86. Guenzi, W. D., and W. E. Beard: Anaerobic conversion of DDT to DDD and aerobic stability of DDT in soil. Proc. Soil Sci. Soc. Amer. 32, 522 (1968).CrossRefGoogle Scholar
  87. Guenzi, W. D., and F. G. Viets, Jr.: Influence of soil treatment on persistence of six chlorinated hydrocarbon insecticides in the field. Proc. Soil Sci. Soc. Amer. 35, 910 (1971).Google Scholar
  88. Gunner, H. B.: Microbial ecosystem stress induced by an organophosphate insecticide. Mededelingen Faculteit Landbouwwetenschappen Gent. 35, 581 (1970).Google Scholar
  89. Gunner, H. B., B. M. Zuckerman: Degradation of “diazinon” by synergistic microbial action. Nature 217, 1183 (1968).PubMedCrossRefGoogle Scholar
  90. Gunner, H. B., R. W. Walker, C. W. Miller, K. H. Deubert, and R. E. Longley: The distribution and persistence of diazinon applied to plant and soil and its influence on rhizosphere and soil microflora. Plant Si Soil 25, 249 (1966).CrossRefGoogle Scholar
  91. Harris, C. R.: Laboratory studies on the persistence of biological activity of some insecticides in soils. J. Econ. Entomol. 62, 1437 (1969).PubMedGoogle Scholar
  92. Harris, C. R.: Persistence and behavior of soil insecticides. In Pesticides in the soil: Ecology, degradation, and movement. Internat. Symp. on Pesticides in the Soil, p. 58. East Lansing: Mich. State Univ. (1970).Google Scholar
  93. Harris, C. R.: Factors influencing the effectiveness of soil insecticides. Ann. Rev. Entomol. 17, 177 (1972).CrossRefGoogle Scholar
  94. Harris, C. R., and W. W. Sans: Absorption of organochlorine insecticide residues from agricultural soils by root crops. J. Agr. Food Chem. 15, 861 (1967).CrossRefGoogle Scholar
  95. Harris, C. R., and W. W. Sans: Vertical distribution of residues of organochlorine insecticides in soils collected from six farms in southwestern Ontario. Proc. Entomol. Soc. Ontario 100, 156 (1969).Google Scholar
  96. Henzell, R. F., and R. J. Lancaster: Degradation of commercial DDT in silage. J. Sci. Food Agr. 20, 499 (1969).CrossRefGoogle Scholar
  97. Hicks, G. F., and T. R. Corner: Location and consequences of 1,1,1-trichloro-2,2bis (p-chlorophenyl) ethane uptake by Bacillus megaterium. Applied Microbiol. 25, 381 (1973).Google Scholar
  98. Hubbell, D. H., D. F. Rothwell, W. B. Wheeler, W. B. Tappan, and F. M. Rhoads: Microbial effects and persistence of some pesticide combinations in soil. J. Environ. Qual. 2, 96 (1973).CrossRefGoogle Scholar
  99. Isaac, I., and J. B. Heale: Wilt of lucerne caused by species of Verticillium. 3. Viability of V. alboatum carried with lucerne seed; effects of seed dressing and fumigants. Ann. Applied Biol. 49, 675 (1961).CrossRefGoogle Scholar
  100. Ishizawa, S., and T. Matsuguchi: Effects of pesticides and herbicides upon microorganisms in soil and water under waterlogged condition. Bull. Nat. Inst. Agr. Sci. Ser. B, 1 (1966).Google Scholar
  101. Jagnow, G., and K. Haider: Evolution of C“O2 from soil incubated with dieldrin-C’ and the action of soil bacteria on labelled dieldrin. Soil Biol. Biochem. 4, 43 (1972).Google Scholar
  102. Jensen, H. L.: Carbon nutrition of some microorganisms decomposing halogen-substituted aliphatic acids. Acta Agriculture Scandinavica 3, 404 (1963).CrossRefGoogle Scholar
  103. Johnson, B. T., and J. O. Kennedy: Biomagnification of p,p’-DDT and methoxychlor by bacteria. Applied Microbiol. 26, 66 (1973).Google Scholar
  104. Johnson, B. T., and C. O. Knowles: Microbial degradation of the acaricide N’-(4-chloro-O-tolyl)-N,N-dimethylformamidine. Bull. Environ. Contam. Toxicol. 5, 158 (1970).CrossRefGoogle Scholar
  105. Johnson, B. T., R. N. Goodman, and H. S. Goldberg: Conversion of DDT to DDD by pathogenic and saprophytic bacteria associated with plants. Science 157, 560 (1967).PubMedCrossRefGoogle Scholar
  106. Jones, R. J. The use of cyclodiene insecticides as liquid seed dressing to control bean fly (Melanagromyza phaseoli) in species of Phaseolus and Vigna marina in south-eastern Queensland. Austral. J. Expt. Agr. Animal Husbandry 5, 458 (1965).CrossRefGoogle Scholar
  107. Jönsson, A., and G. Fahreus: On the effect of aldrin on soil bacteria. Ann. Royal Agr. Col. Sweden 26, 323 (1960).Google Scholar
  108. Kallman, B. J., and A. K. Andrews: Reductive dechlorination of DDT to DDD by yeast. Science 141, 1050 (1963).PubMedCrossRefGoogle Scholar
  109. Kazano, H., P. C. Kearney, and D. D. Kaufman: Metabolism of methylcarbamate insecticides in soils. J. Agr. Food Chem. 20, 975 (1972).CrossRefGoogle Scholar
  110. Ko, W. H., and J. L. Locxwood: Conversion of DDT to DDD in soil and the effect of these compounds on soil microorganisms. Can. J. Microbiol. 14, 1069 (1968).PubMedCrossRefGoogle Scholar
  111. Ko, W. H., and J. L. Locxwood: Transfer of P2 and dieldrin among selected micro organisms in soil. Rev. Ecol. Biol. Sol. 7, 465 (1970).Google Scholar
  112. Kobayashi, T., and S. Katsura: The soil application of insecticides. 4. Effect of systemic organophosphates on soil nitrification and on the growth and yield of potatoes. Jap. J. Applied Entomol. Zool. 12, 53 (1968).CrossRefGoogle Scholar
  113. Koch, B., and H. J. Evans: Reduction of acetylene to ethylene by soybean root nodules. Plant Physiol. 41, 1748 (1966).PubMedCrossRefGoogle Scholar
  114. Kokke, R.: DDT: Its action and degradation in bacterial populations. Nature 226, 977 (1970).PubMedCrossRefGoogle Scholar
  115. Konrad, J. G., and G. Chesters: Degradation in soils of ciodrin, an organophosphate insecticide. J. Agr. Food Chem. 17, 226 (1969).CrossRefGoogle Scholar
  116. Konrad, J. G., and D. E. Armstrong: Soil degradation of malathion, a phosphorodithioate insecticide. Proc. Soil Sci. Soc. Amer. 33, 259 (1969).CrossRefGoogle Scholar
  117. Korte, F.: Metabolism studies with C’ labelled drin-insecticides. 5th Internat. Pest. Congress, p. 30. London (1963).Google Scholar
  118. Korte, F.: Metabolism of chlorinated insecticides. IUPAC, Pest. Sect., Proc. Commission on Terminal Residues and of the Commission on Residue Analysis, p. 39. Vienna (1967).Google Scholar
  119. Korte, F., G. Ludwig, and J. Vogel: Umwandlung von Aldrin-C’ and Dieldrin-C’ durch Mikroorganismen, Leber Homogenate and Moskito-Laven. Liebigs Ann. 656, 135 (1962).CrossRefGoogle Scholar
  120. Langlois, B. E., J. A. Collins, and K. G. Sides: Some factors affecting degradation of organochlorine pesticides by bacteria. J. Dairy Sci. 53, 1671 (1970).PubMedCrossRefGoogle Scholar
  121. Ledford, R. A., and J. H. Chen: Degradation of DDT to DDE by cheese microorganisms. J. Food Sci. 34, 386 (1969).CrossRefGoogle Scholar
  122. Lemire, R., and V. Fredette: Action of DDT on bacteria. Rev. Can. Biol. 20, 833 (1961).Google Scholar
  123. Lichtenstein, E. P.: Insecticide uptake from soil. Insecticide residues in various crops grown in soils treated with abnormal rates of aldrin and heptachlor. J. Agr. Food Chem. 8, 448 (1960).CrossRefGoogle Scholar
  124. Lichtenstein, E. P.: Fate and movement of insecticides in and from soils. In Pesticides in the soil: Ecology, degradation and movement. Internat. Symp. on Pesticides in the Soil, p. 101. East Lansing: Mich. State Univ. (1970).Google Scholar
  125. Lichtenstein, E. P., and K. R. Schulz: Epoxidation of aldrin and heptachlor in soils as influenced by autoclaving, moisture and soil types. J. Econ. Entomol. 53, 192 (1960).Google Scholar
  126. Lichtenstein, E. P., and K. R. Schulz: Effect of soil cultivation, soil surface and water on the persistence of insecticidal residues in soils. J. Econ. Entomol. 54, 517 (1961).Google Scholar
  127. Lichtenstein, E. P., and K. R. Schulz: The effects of moisture and microorganisms on the persistence and metabolism of some organophosphorus insecticides in soil with special emphasis on parathion. J. Econ. Entomol. 57, 618 (1964).Google Scholar
  128. Lichtenstein, E. P., J. P. E. Anderson, T. W. Fuhremann, and K. R. Schulz: Aldrin and dieldrin: Loss under sterile conditions. Science 159, 1110 (1968).PubMedCrossRefGoogle Scholar
  129. Lichtenstein, E. P., T. W. Fuhremann, and K. R. Schulz: Effect of sterilizing agents on persistence of parathion and diazinon in soils and water. J. Agr. Food Chem. 16, 870 (1968).CrossRefGoogle Scholar
  130. Lichtenstein, E. P., T. W. Fuhremann, and K. R. Schulz: Persistence and vertical distribution of DDT, lindane, and aldrin residues. J. Agr. Food Chem. 19, 718 (1971).CrossRefGoogle Scholar
  131. Lichtenstein, E. P., C. H. Mueller, G. R. Myrdal, and K. R. Schulz: Vertical distribution and persistence of insecticidal residues in soils as influenced by mode of application and a cover crop. J. Econ. Entomol. 55, 215 (1962).Google Scholar
  132. Lichtenstein, E. P., G. R. Myrdal, and K. R. Schulz: Effect of formulation and mode of application of aldrin on the loss of aldrin and its epoxide from soils and their translocation into carrots. J. Econ. Entomol. 57, 133 (1964).Google Scholar
  133. Lin, S. H., B. R. Funke, and J. T. Schulz: Effects of some organophosphate and carbamate insecticides on nitrification and legume growth. Plant and Soil 37, 489 (1972).CrossRefGoogle Scholar
  134. Liu, S. Y., and J. M. Bollag: Metabolism of carbaryl by a soil fungus. J. Agr. Food Chem. 19, 487 (1971).CrossRefGoogle Scholar
  135. Liu, S. Y., and J. M. Bollag: Carbaryl decomposition to 1-naphthyl carbamate by Aspergillus terreus. Pest. Biochem. Physiol. 1, 366 (1972).CrossRefGoogle Scholar
  136. Mackenzie, K. A., and I. C. Macrae: Tolerance of the nitrogen-fixing system of Azotobacter vinelandii to four commonly used pesticides. Antonie van Leeuwenhoek J. Microbiol. Serol. 38, 529 (1972).Google Scholar
  137. Mackiewicz, M., K. H. Deubert, H. B. Gunner, and B. M. Zuckerman: Study of parathion biodegradation using gnotobiotic techniques. J. Agr. Food Chem. 17, 129 (1969).CrossRefGoogle Scholar
  138. Macphee, H. W., D. Chisholm, and C. R. Maceachen: The persistence of certain pesticides in the soil and their effect on crop yields. Can. J. Soil Sci. 40, 59 (1960).CrossRefGoogle Scholar
  139. Macrae, I. C., K. Raghu, and E. M. Bautista: Anaerobic degradation of the insecticide, lindane by Clostridium sp. Nature 221, 859 (1969).PubMedCrossRefGoogle Scholar
  140. Macrae, I. C. and T. F. Castro: Persistence and biodegradation of four common isomers of benzene hexachloride in submerged soils. J. Agr. Food Chem. 15, 911 (1967).CrossRefGoogle Scholar
  141. Martin, J. P.: The influence of pesticides on soil properties. Agr. Chemical West., pp. 9–12. Feb. (1966 a).Google Scholar
  142. Martin, J. P.: Influence of pesticides on soil microbes and soil properties. In: Pesticides and their effects on soils and water. Soil Sci. Soc. Amer., ASA special publ. 8, 95 (1966 b).Google Scholar
  143. Matsumura, F., and G. M. Boush: Malathion degradation by Trichoderma viride and a Pseudomonas species. Science 153, 1278 (1966).PubMedCrossRefGoogle Scholar
  144. Matsumura, F., and G. M. Boush: Dieldrin: Degradation by soil microorganisms. Science 156, 959 (1967).PubMedCrossRefGoogle Scholar
  145. Matsumura, F., and G. M. Boush: Degradation of insecticides by a soil fungus, Trichoderma viride. J. Econ. Entomol. 61, 610 (1968).PubMedGoogle Scholar
  146. Matsumura, F., and A. Tax: Breakdown of dieldrin in the soil by a microorganism. Nature 219, 965 (1968).PubMedCrossRefGoogle Scholar
  147. Matsumura, F., V. G. Khanvilkar, and K. C. Patil: Metabolism of endrin by certain soil microorganisms. J. Agr. Food Chem. 19, 27 (1971).CrossRefGoogle Scholar
  148. Matsumura, F., K. C. Patil, and G. M. Boush: Formation of photodieldrin by microorganisms. Science 170, 1206 (1970).PubMedCrossRefGoogle Scholar
  149. Meksongsee, B., and F. E. Guthrie: Degradation of chlorinated hydrocarbon insecticides by certain soil bacteria in broth culture. J. Elisha Mitchell Sci. Soc. 81, 81 (1965).Google Scholar
  150. Menzel, D. W., J. Anderson, and A. Randtke: Marine phytoplankton vary in their response to chlorinated hydrocarbons. Science 167, 1724 (1970).PubMedCrossRefGoogle Scholar
  151. Metcalf, R. L., G. K. Sangha, and I. P. Kapoon: Model ecosystem for the evaluation of pesticide biodegradability and ecological magnification. Environ. Sci. Technol. 5, 709 (1971).CrossRefGoogle Scholar
  152. Mice, D. L., and P. A. Dahm: Metabolism of parathion by two species of Rhizobium. J. Econ. Entomol. 63, 1155 (1970).Google Scholar
  153. Miles, J. R. W.: Arsenic residues in agricultural soils of southwestern Ontario. J. Agr. Food Chem. 16, 620 (1968).CrossRefGoogle Scholar
  154. Miles, J. R. W., C. M. Tu, and C. R. Harris: Metabolism of heptachlor and its degradation products by soil microorganisms. J. Econ. Entomol. 62, 1334 (1969).PubMedGoogle Scholar
  155. Miles, J. R. W., C. M. Tu, and C. R. Harris: Degradation of heptachlor epoxide and heptachlor by a mixed culture of soil microorganisms. J. Econ. Entomol. 64, 839 (1971).PubMedGoogle Scholar
  156. Milthorre, F. L.: The compatibility of protectant seed dusts with root nodule bacteria. J. Austral. Inst. Agr. Sci. 11, 89 (1945).Google Scholar
  157. Mitsui, S., I. Watanabe, and S. Honda: Effect of pesticides on denitrification in paddy soil. I. Japanese J. Soil Sci. Fertilizer 33, 469 (1962).Google Scholar
  158. Mitsui, S., and S. Hooafa: Action of pesticides on denitrification in paddy soils. II. Soil Sci. and Plant Nut. 10, 45 (1964).Google Scholar
  159. Miyaaioto, J., K. Kitacawa, and Y. Sato: Metabolism of organophosphorus insecticides by Bacillus subtilis, with special emphasis on Sumithion. Jap. J. Expt. Med. 36, 211 (1966).Google Scholar
  160. Miyazaki, S., and A. J. Thoasteinson: Metabolism of DDT by fresh water diatoms. Bull. Environ. Contain. Toxicol. 8, 81 (1972).CrossRefGoogle Scholar
  161. Miyazaki, S., G. M. Bouses, and F. Matsumura: Microbial degradation of chlorobenzilate (ethyl 4,4’-dichlorobenzilate) and chloropropylate (isopropyl 4,4’-dichlorobenzilate). J. Agr. Food Chem. 18, 87 (1970).CrossRefGoogle Scholar
  162. Mostafa, I. Y., I. M. Fakhr, M. B. Bahig, and Y. A. Elzawakr: Metabolism of organophosphorus insecticides. 13. Degradation of malathion by Rhizobium spp. Arch. Mikrobiol. 86, 221 (1972).PubMedCrossRefGoogle Scholar
  163. Munnecke, D. M., and D. P. H. Hsieh: Microbial decontamination of parathion and p-nitrophenol in aqueous media. Applied Microbiol. 28, 212 (1974).Google Scholar
  164. Murphy, R. T., and W. F. Barthel: Insecticide residues studies. Determination of heptachlor and heptachlor expoxide in soil. J. Agr. Food Chem. 8, 442 (1960).CrossRefGoogle Scholar
  165. Naumann, K.: Dynamics of the soil microflora following application of insecticides. I. Field trials on the effects of methyl parathion on the bacterial and actinomycetes population of soil. Zentbl. Bakt. Parasitkde Abt. 124, 743 (1970 a).Google Scholar
  166. Naumann, K.: Dynamics of the soil microflora following application of insecticides. II. Reaction of soil bacteria belonging to different physiological groups to field applications of methyl parathion. Zentble Bakt. Parasitkde Abt. 124, 755 (1970 b).Google Scholar
  167. Naumann, K.: Zur Dynamik der Bodenmikroflora nach Anwendung von Pflanzenschutzmitteln: III: Untersuchungen uber die Wirkung von Parathion-methyl auf den Mikroorganismenpopulationen von Lehm-und Sandboden. Pedobiologia 11, 227 (1971 a).Google Scholar
  168. Naumann, K.: Dynamics of the soil microflora following the application of insecticides. VI. Trials with the insecticides -y-BHC and toxaphene. Pedobiologia 11, 286 (1971 b).Google Scholar
  169. Naumann, K.: Alterations in the bacterial flora of soil following the application of pesticides. Zentbl. Bakt. Parasitkde Infektionskrankheiten und Hygiene, Zweite Abt. 126, 530 (1971 c).Google Scholar
  170. Newland, L. W., G. Chesters, and G. B. Lee: Degradation of y-BHC in simulated lake impoundments as affected by aeration. J. Water Pollut. Control Fed. 41, R 174 (1969).Google Scholar
  171. Nishihara, T.: Effect of some nitrification inhibitors on the availability of basal-dressed nitrogen to directly sown rice plants on a dry paddy field. Bull. Fac. Agr. Kagoshima Univ. No. 12, 107 (1962).Google Scholar
  172. Pareek, R. P., and A. C. Gaur: Effect of dichloro diphenyl-trichloro-ethane (DDT) on nodulation, growth, yield and nitrogen uptake of Pisum sativum inoculated with Rhizobium leguminosarum. Indian J. Microbiol. 9, 93 (1969).Google Scholar
  173. Pareek, R. P., and A. C. Gaur: Effect of dichloro diphenyl-trichloro-ethane (DDT) on symbiosis of Rhizobium sp. with Phaseolus aureus (green gram). Plant and Soil 33, 297 (1970).CrossRefGoogle Scholar
  174. Parr, J. F., and S. Smith: A multiple-purpose manifold assembly in evaluating microbiological effects of pesticides. Soil Sci. 107, 271 (1969).CrossRefGoogle Scholar
  175. Patil, K. C., F. Matsumura, arid G. M. Bouses: Degradation of endrin, aldrin and DDT by soil microorganisms. Applied Microbiol. 19, 879 (1970).Google Scholar
  176. Pfaender, F. K., and M. Alexander: Extensive microbial degradation of DDT in vitro and DDT metabolism by natural communities. J. Agr. Food Chem. 20, 842 (1972).CrossRefGoogle Scholar
  177. Plimmer, J. R., P. C. Kearney, and D. W. von Endt: Mechanism of conversion of DDT to DDD by Aerobacter aerogenes. J. Agr. Food Chem. 16, 594 (1968).CrossRefGoogle Scholar
  178. Plotasov, P. V., and G. I. Yarovenko: The role of disinfectants in increasing the effectiveness of nitrogen fertilizers on irrigated cotton fields. Udohr. Urozh 2, 31 (1958).Google Scholar
  179. Poonawalla, N. H., and F. Korte: Metabolism of (3-dihydrochloro-C“ in soil and by microorganisms. J. Agr. Food Chem. 16, 15 (1968).CrossRefGoogle Scholar
  180. Raghu, K., and I. C. Macrae: Biodegradation of gamma isomer of BHC in submerged soils. Science 154, 263 (1966).PubMedCrossRefGoogle Scholar
  181. Raghu, K., and I. C. Macrae: The effect of gamma isomer of BHC upon the microflora of submerged rice soils. II. Effect upon nitrogen mineralization and fixation, and selected bacteria. Can. J. Microbiol. 13, 621 (1967).PubMedCrossRefGoogle Scholar
  182. Rao, A. V., and N. Sethunathan: Degradation of parathion by Penicillium waksmani Zaleski isolated from flooded acid sulphate soil. Arch. Microbiol. 97, 203 (1974).PubMedCrossRefGoogle Scholar
  183. Rao, H. R. G., and P. K. Harein: Dichlorvos as an inhibitor of aflatoxin production on wheat, corn, rice, and peanut. J. Econ. Entomol. 65, 988 (1972).Google Scholar
  184. Rautapaa, J., H. Siltanen, A. L. Valta, and V. Mattinen: DDT, lindane and endrin in some agricultural soils in Finland. J. Sci. Agr. Soc. Finland 44, 199 (1972).Google Scholar
  185. Richardson, L. T., and D. M. Miller: Fungitoxicity of chlorinated hydrocarbon insecticides in relation to water solubility and vapor pressure. Can. J. Botany 38, 163 (1960).CrossRefGoogle Scholar
  186. Robson, H., and H. B. Gunner: Differential response of soil microflora to diazinon. Plant and Soil 33, 613 (1970).CrossRefGoogle Scholar
  187. Ross, D. J.: Influence of four pesticide formulations on microbial processes in a New Zealand pasture soil. II. N.trogen mineralization. N.Z. J. Agr. Res. 17, 9 (1974).CrossRefGoogle Scholar
  188. Ruhloff, M., and J. C. Burton: Compatibility of Rhizobia with seed protectants. Soil Sci. 72, 283 (1951).CrossRefGoogle Scholar
  189. Russell, M. J., and J. E. Coaldrake: The effect of some chlorinated hydrocarbon insecticides on nodulation of Medicago sativa and Glycine javanica. j. Austral. Inst. Agr. Sci. 32, 214 (1966).Google Scholar
  190. Sacrer, R. M., G. F. Ludrix, and J. M. Deming: Bioactivity and persistence of some parathion formulations in soil. J. Econ. Entomol. 65, 329 (1972).Google Scholar
  191. Salem, S. H.: Effect of insecticides on the physiological activity of effective and ineffective strains of Rhizobium trifolii. Agrokern. Talajtan 20, 302 (1971).Google Scholar
  192. Salem, S. H., and F. Gulyas: Effect of insecticides on the physiological behavior of the Azotobacter species. Agrokerl. Talajtan 20, 377 (1971).Google Scholar
  193. Salonius, P. O.: Effect of DDT and fenitrothion on forest-soil microflora. J. Econ. Entomol. 65, 1089 (1972).Google Scholar
  194. Schlagbauer, B. G. L., and A. W. Schlagbauer: The metabolism of carbarnate pesticides—A literature analysis. Residue Reviews 42, 1 (1972)PubMedGoogle Scholar
  195. Selim, K. G., S. A. Z. Mahmoud, and M. T. El-Moxadem: Effect of dieldrin and lindane on the growth and nodulation of Vicia faba. Plant and Soil 33, 325 (1970).CrossRefGoogle Scholar
  196. Sethunathan, N.: Microbial degradation of insecticides in flooded soil and in anaerobic cultures. Residue Reviews 47, 143 (1973).PubMedGoogle Scholar
  197. Sethunathan, N., and I. C. Macrae: Some effects of diazinon on the microflora of submerged soils. Plant and Soil 30, 109 (1969 a).Google Scholar
  198. Sethunathan, N., and I. C. Macrae: Persistence and biodegradation of diazinon in submerged soils. J. Agr. Food Chem. 17, 221 (1969 b).Google Scholar
  199. Sethunathan, N., and M. D. Pathak: Development of diazinon-degrading bacteria in paddy water after repeated applications of diazinon. Can. J. Microbiol. 17, 699 (1971).PubMedCrossRefGoogle Scholar
  200. Sethunathan, N., and M. D. Pathak: Increased biological hydrolysis of diazinon after repeated application in rice paddies. J. Agr. Food Chem. 20, 586 (1972).CrossRefGoogle Scholar
  201. Sethunathan, N., and T. Yoshida: Conversion of parathion to para-nitrophenol by diazinondegrading Flavobacterium sp. Proc. 18th Ann. Meeting Inst. Environ. Sci. 18, 255 (1972).Google Scholar
  202. Sethunathan, N., and T. Yoshida: A Flavobacterium sp. that degrades diazinon and parathion. Can. J. Microbiol. 19, 873 (1973).PubMedCrossRefGoogle Scholar
  203. Sethunathan, N., E. M. Boutista, and T. Yoshida: Degradation of benzene hexachloride by a soil bacterium. Can. J. Microbiol. 15, 1349 (1969).PubMedCrossRefGoogle Scholar
  204. Siddaramappa, R., K. P. Rajaram, and N. Sethunathan: Degradation of parathion by bacteria isolated from flooded soil. Applied Microbiol. 26, 846 (1973).Google Scholar
  205. Silverman, M. P.: Mechanism of bacterial pyrite oxidation. J. Bacteriol. 94, 1046 (1967).PubMedGoogle Scholar
  206. Sinch, H., and V. S. Mehta: Study of the effect of chlorinated insecticides on nitrification of alluvial soils of Gwalior. Allahabad Fmr. 38, 269 (1964).Google Scholar
  207. Sivasithamparam, K.: Some effects of an insecticide (Dursban) and a weedicide (linuron) on the microflora of a submerged soil. Proc. Ceylon Assoc. Adv. Sci. 25, 1 (1969).Google Scholar
  208. Sivasithamparam, K.: Some effects of an insecticide Dursban and a weedicide linuron on the microflora of a submerged soil. Riso 19, 339 (1970).Google Scholar
  209. Sivastava, S. C.: The effect of Telodrin on nitrification of ammonia in soil and its implication on nitrogen nutrition of sugar cane. Plant and Soil 15, 471 (1966).CrossRefGoogle Scholar
  210. Smith, N. R., and M. E. Wenzel: Soil microorganisms are affected by some of the new insecticides. Proc. Soil Sci. Soc. Amer. 12, 227 (1947).CrossRefGoogle Scholar
  211. Spencer, E. Y.: Terminal residues of organophosphorus insecticides in soil and terminal residues of organophosphorus fumigants. In: Internat. Symp. Pure and Applied Chem., p. 3. Tel-Aviv, Israel (1971).Google Scholar
  212. Spencer, W. F.: Distribution of pesticides between soil, water, and air. In: Pesticides in the soil: Ecology, degradation, and movement. Internat. Symp. on Pesticides in the Soil, p. 120. East Lansing: Mich. State Univ. (1970).Google Scholar
  213. Stenersen, J.: Degradation of P 2-bromophos by microorganisms and seedlings. Bull. Environ. Contam. Toxicol. 4, 104 (1969).CrossRefGoogle Scholar
  214. Stewart, D. K. R., D. Chisholm, and M. T. H. Ragar: Long term persistence of parathion in soil. Nature 229, 47 (1971).PubMedCrossRefGoogle Scholar
  215. Stojanovic, B. J., M. V. Kennedy, and F. L. Shuman, jr.: Edaphic aspects of the disposal of unused pesticides, pesticides wastes, and pesticide containers. J. Environ. Qual. 1, 54 (1972).CrossRefGoogle Scholar
  216. Sup, R. K., A. K. Sun, and K. G. Gupta: Degradation of sevin (1-naphthyl N-methyl carbamate) by Arthrobacter species. Arch. Mikrobiol. 87, 353 (1972).CrossRefGoogle Scholar
  217. Suett, D. L.: Persistence and degradation of chlorfenvinphos, diazinon, fonofos and phorate in soils and their uptake by carrots. Pest. Sci. 2, 105 (1971).CrossRefGoogle Scholar
  218. Tarrant, R. F., D. G. Moore, W. B. Bollen, and B. R. Loper: DDT residues in forest floor and soil after aerial spraying, Oregon-1965–68. Pest. Monit. J. 6, 65 (1972).Google Scholar
  219. Tate, K. R.: Influence of four pesticide formulations on microbial processes in a New Zealand pasture soil. I. Respiratory activity. N. Z. J. Agr. Res. 17, 1 (1974).Google Scholar
  220. Timonin, M. I.: The interactions of higher plant and soil microorganisms. III. Effect of by-products of plant growth on activity of fungi and actinomycetes. Soil Sci. 52, 395 (1941).CrossRefGoogle Scholar
  221. Trela, J. M., W. J. Ralson, and H. B. Gunner: Metabolism of diazinon by soil microflora. Bacteriol. Proc. A30 (1968).Google Scholar
  222. Trudgill, P. W., and R. Widdus: Effects of chlorinated insecticides on metabolic processes in bacteria. Biochem. J. 118, 48 p. (1970).Google Scholar
  223. Trudgill, P. W. and J. S. Rees: Effects of organochlorine insecticides on bacterial growth, respiration and viability. J. Gen. Microbiol. 69, 1 (1971).PubMedGoogle Scholar
  224. Tsukano, Y., and A. Kobayashi: Formation of y-BTC in flooded rice field soils treated with y-BHC. Agr. Biol. Chem. 36, 166 (1972).CrossRefGoogle Scholar
  225. Tu, C. M.: Effect of aldrin and dieldrin on microbiol activity in soil. Unpublished data (1968).Google Scholar
  226. Tu, C. M.: Effect of four organophosphorus insecticides on microbial activities in soil. Applied Microbiol. 19, 479 (1970).Google Scholar
  227. Tu, C. M.: Effect of four nematocides on activities of microorganisms in soil. Applied Microbiol. 23, 398 (1972).Google Scholar
  228. Tu, C. M.: The effect of Mocap, N-Serve, Telone and Vorlex at two temperatures on populations and activities of microorganisms in soil. Can. J. Plant Sci. 53, 401 (1973 a).Google Scholar
  229. Tu, C. M.: The temperature dependent effect of residual nematicides on the activities of soil microorganisms. Can. J. Microbiol. 19, 855 (1973 b).Google Scholar
  230. Tu, C. M.: Interaction between lindane and microbes in soils. Arch. Microbiol. 105, 131 (1975).PubMedCrossRefGoogle Scholar
  231. Tu, C. M. and W. B. Bollen: Effect of paraquat on microbial activities in soils. Weed Res. 8, 28 (1968 a).Google Scholar
  232. Tu, C. M. and W. B. Bollen: Interaction between paraquat and microbes in soils. Weed Res. 8, 38 (1968 b).Google Scholar
  233. Tu, C. M. and W. B. Bollen: Effect of Tordon herbicides on microbial activities in three Willamette valley soils. Down to Earth 25, 15 (1969).Google Scholar
  234. J. R. W. Miles and C. R. Harris: Soil microbial degradation of aldrin. Life Sci. 7, 311 (1968).PubMedCrossRefGoogle Scholar
  235. Tucker, B. V., and D. E. Pack: Bux insecticide soil metabolism. J. Agr. Food Chem. 20, 412 (1972).CrossRefGoogle Scholar
  236. Ueyama, A., H. Egawa, and M. Tsuna: Absorption of 7-BHC by Fusarium roseum Link in culture. Ann. Phytopath. Soc. Japan 35, 347 (1969).CrossRefGoogle Scholar
  237. Ueyama, A., M. Masuxo, and H. Shikata: Biodegradation of pesticides by microorganisms. 3. Factors affecting the absorption of BHC isomers by fungal mycelium. Nippon Kingakku Kaiho 12, 103 (1971).Google Scholar
  238. Vance, B. D., and W. Drummon: Biological concentration of pesticides by algae. Amer. Water Works Assoc. J. 61, 360 (1969).Google Scholar
  239. Voerman, S., and P. M. L. Tammes: Adsorption and desorption of lindane and dieldrin by yeast. Bull. Environ. Contam. Toxicol. 4, 271 (1969).CrossRefGoogle Scholar
  240. Waksman, S. A., and R. L. Starkey: Partial sterilization of soil, microbiological activities and soil fertility. I-III. Soil Sci. 16, 137, 247, and 343 (1923).Google Scholar
  241. Walker, W. W., and B. J. Stojanovic: Microbial versus chemical degradation of malathion in soil. J. Environ. Qual. 2, 229 (1973).CrossRefGoogle Scholar
  242. Walker, W. W., and B. J. Stojanovic: Malathion degradation by an Arthrobacter species. J. Environ. Qual. 3, 4 (1974).CrossRefGoogle Scholar
  243. Ware, G. W., and C. C. Roan: Interaction of pesticides with aquatic microorganisms and plankton. Residue Reviews 33, 15 (1970).PubMedGoogle Scholar
  244. Wedemeyer, G.: Dechlorination of DDT by Aerobacter aerogenes. Science 152, 647 (1966).PubMedCrossRefGoogle Scholar
  245. Wedemeyer, G.: Dechlorination of 1,1–1, trichloro-2,2-bis (p-chlorophenyl) ethane by Aerobacter aerogenes. Applied Microbiol. 15, 569 (1967 a).Google Scholar
  246. Wedemeyer, G.: Biodegradation of dichlorodiphenyltrichloroethane: Intermediates in dichlorodiphenylacetic acid metabolism by Aerobacter aerogenes. Applied Microbiol. 15, 1494 (1967 b).Google Scholar
  247. Wedemeyer, G.: Partial hydrolysis of dieldrin by Aerobacter aerogenes. Applied Microbiol. 16, 661 (1968).Google Scholar
  248. Wheeler, W. B.: Experimental absorption of dieldrin by Chlorella. J. Agr. Food Chem. 18, 416 (1970).CrossRefGoogle Scholar
  249. Winely, C. L., and C. L. Sanclemente: Inhibition by certain pesticides of the nitrite oxidation of Nitrobacter agilis. Bacteriol. Proc. A63 (1968).Google Scholar
  250. Winely, C. L., and C. L. Sanclemente: Effects of pesticides on nitrite oxidation by Nitrobacter agilis. Applied Microbiol. 19, 214 (1970).Google Scholar
  251. Yao, R. O., and D. P. H. Hsieh: Step of dichlorvos inhibition in the pathway of aflatoxin biosynthesis. Applied Microbiol. 28, 52 (1974).Google Scholar
  252. Young, W. R., and W. A. Rawlins: The persistence of heptachlor in soils. J. Econ. Entomol. 51, 11 (1958).Google Scholar
  253. Yule, W. N.: Intensive studies of DDT residues in forest soil. Bull. Environ. Contam. Toxicol. 9, 57 (1973).PubMedCrossRefGoogle Scholar
  254. Yule, W. N., M. Cirba, and H. V. Morley: Fate of insecticide residues. Decomposition of lindane in soil. J. Agr. Food Chem. 15, 1000 (1967).CrossRefGoogle Scholar
  255. Zamx, M. J., R. D. Scauetz, W. L. Burton, and B. E. Pape: Photochemistry of bioactive compounds. Studies of a major photolytic product of endrin. J. Agr. Food Chem. 19, 308 (1971).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1976

Authors and Affiliations

  • C. M. Tu
    • 1
  • J. R. W. Miles
    • 1
  1. 1.Research Institute, Agriculture CanadaUniversity Sub Post OfficeLondonCanada

Personalised recommendations