In Vitro Manipulation of Barley and Other Cereals

  • Horst Lörz
  • Reinhold Brettschneider
  • Sabine Hartke
  • Ravinder Gill
  • Erhard Kranz
  • Peter Langridge
  • Andrzej Stolarz
  • Paul Lazzeri
Part of the Stadler Genetics Symposia Series book series (SGSS)


Already, it can be seen and more so in the future, it is expected, that plant cell biology and molecular biology will have a major impact on agriculture by supplementing the present activities of plant breeders in expanding and diversifying the gene pool of crop species and in speeding up the breeding process. Different strategies are used which apply in vitro methods to generate diversity within existing populations, to identify rare, but desired individual plants, and to broaden the genetic pool of breeding material. Of major interest are the production of homozygous lines by anther- and micropsore-culture, the in vitro selection of cultured cells to create stress or disease resistant plants, protoplast fusion and somatic hybridization to overcome the natural barriers of incompatibility or to establish new combinations of organellar and nuclear genomes in somatic hybrid or cybrid plants, and finally the transfer of isolated genes to achieve a directed, highly defined genetic modification of a specific crop plant. Progress with cereals and grasses in the past has been rather slow when compared to species such as Nicotiana tabacum, Solanum tuberosum or Brassica napus. The field has been reviewed recently in numerous articles (Göbel and Lörz, 1988; Lörz et al., 1988; Ozias-Akins and Vasil, 1988), thus mostly recent experiments from our laboratory and new developments will be discussed.


Somatic Embryo Somatic Embryogenesis Plant Regeneration Durum Wheat Direct Gene Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdullah, R., Cocking, E.C., and Thompson, J.A., 1986, Efficient plant regeneration from rice protoplasts through somatic embryogenesis, Bio/Technology, 4: 1087–1090.CrossRefGoogle Scholar
  2. Benito-Moreno, R.M., Macke, F., Alwen, A., and Heberle-Bors, E., 1988, In-situ seed production after pollination with in-vitro-matured, isolated pollen, Planta, 176: 145–148.CrossRefGoogle Scholar
  3. Boynton, J.E., Gillham, N.W., Harris, E.H., Hosler, J.P., Johnson, A.M., Jones, A.R., Randolph-Anderson, B.L., Robertson, D., Klein, T.M., Shark, K., and Sanford J.C., 1988, Chloroplast transformation of Chlamydomonas using high velocity microprojectiles, Science, 240: 1534–1538.PubMedCrossRefGoogle Scholar
  4. Crossway, A., Hauptli, H., Houck, C.M., Irvine, J.M., Oakes, J.V., and Perani, L.A., 1986, Micromanipulation techniques in plant biotechnology, Bio/Technology, 4: 320–334.Google Scholar
  5. Datta, S.K., and Wenzel, G., 1987, Isolated microspore derived plant formation via embryogenesis in Triticum aestivum L., Plant Science, 48: 49–54.CrossRefGoogle Scholar
  6. De la Pena, A., Lörz, H., and Schell, J., 1987, Transgenic rye plants obtained by injecting DNA into young floral tillers, Nature, 325: 274–276.CrossRefGoogle Scholar
  7. De Wet, J.W.J., Bergquist, R.R., Harlan, J.R., Brink, D.E., Cohen, C.E., Newell, C.A., and de Wet, A.E., 1985, Exogenous gene transfer in maize (Zea mays) using DNA-treated pollen, in: “Experimental manipulation of ovule tissues”, Chapman, G.P., Mantell, S.H., Daniels, R.W. (eds.), Longman, London, pp. 197–209.Google Scholar
  8. Dunwell, J.M. 1986, Barley. in: “Handbook of Cell Culture”, Evans, D.A., Sharp, W.R., and Ammirato, P.V. eds., McMillan, New York, pp. 339–369.Google Scholar
  9. Fromm, M., Taylor, L.P., and Walbot, V., 1986, Stable transformation of maize after gene transfer by electroporation, Nature, 319: 791–793.PubMedCrossRefGoogle Scholar
  10. Fujimura, T., Sakurai, M., Negishi, T., and Hirose, A., 1985, Regeneration of rice plants from protoplasts, Plant Tissue Culture Letters, 2: 74–75.CrossRefGoogle Scholar
  11. Göbel, E. and Lörz, H., 1988, Genetic manipulation of cereals, Oxford Surveys of Plant Molecular and Cell Biology, 5: 1–22.Google Scholar
  12. Graves, A.C.F., and Goldman, S. L., 1986, The transformation of Zea mays seedlings with Agrobacterium tumefaciens. Detection of T-DNA specific enzyme acti-vities, Plant Mol. Biol., 7: 43–50.CrossRefGoogle Scholar
  13. Hauptmann, R.M., Vasil, V., Ozias-Akins, P., Tabaeizadeh, Z., Rogers, S.G., Fraley, R.T., Horsch, R.B., and Vasil, I.K., 1988, Evaluation of selectable markers for obtaining stable transformants in the Gramineae, Plant Physiol., 86: 602–606.PubMedCrossRefGoogle Scholar
  14. Hess, D., 1987, Pollen based techniques in genetic manipulation, in: “Pollen-Cytology and Development” Giles, K.L. and Prakash, J., eds., Academic Press, Orlando, pp. 367–395.Google Scholar
  15. Johnston, S.A., Butow, R., Shark, K., and Sanford, J.C., 1988, Transformation of yeast mitochondria by bombardement of cells with microprojectiles, Science, 240: 1538–1541.PubMedCrossRefGoogle Scholar
  16. Klein, T.M., Fromm, M.E., Gradziel, T., and Sanford, J.C., 1988, Gene transfer into Zea mays cells by high-velocity microprojectiles is monitored with B-glucuronidase marker, Bio/Technology, 6: 559–563.CrossRefGoogle Scholar
  17. Klein, T.M., Harper, E.C., Svab, Z., Sanford, J.C., Fromm, M.E., and Maliga, P., 1988, Stable genetic transformation of intact Nicotiana cells by the particle bombardement process.. Froc. Natl. Acad. Sci. USA, 85: 8502–8505.CrossRefGoogle Scholar
  18. Köhler, F., and Wenzel, G., 1985, Regeneration of isolated barley microspores in conditioned media and trials to characterise the responsible factor, J. Plant Physiol., 121: 181–191.CrossRefGoogle Scholar
  19. Kott, L.S., and Kasha, K.J., 1984, Initiation and morphological development of somatic embryoids from barley cell cultures, Can. J. Bot., 62: 1245–1249.CrossRefGoogle Scholar
  20. Kyozuka, J., Hayashi, Y., and Shimamoto, K., 1987, High frequency plant regeneration from rice protoplasts by novel nurse culture methods, Mol. Gen. Genet., 206: 408–413.CrossRefGoogle Scholar
  21. Lashermes, P., Gaillard, A., and Beckert, M., 1988, Gynogenetic haploid plants analysis for agronomic and enzymatic markers in maize (Zea mays L.), Theor. Appl. Genet., 76: 570–572.Google Scholar
  22. Lazzeri, P.A., and Lörz, H., 1988, In vitro genetic manipulation of cereals and grasses, Advances in Cell Culture, 6: 291–325.Google Scholar
  23. Lörz, H., Baker, B., and Schell, J., 1986, Gene transfer to cereal cells mediated by protoplast transformation, Mol. Gen. Genet., 199: 178–182.CrossRefGoogle Scholar
  24. Lörz, H., Göbel, E., and Brown, P.T.H., 1988, Advances in culture and progress towards genetic transformation of cereals, Plant Breeding, 100: 1–25.CrossRefGoogle Scholar
  25. Lührs, R., and Lörz, H., 1988, Initiation of morpho-genic cell suspension and protoplast cultures of barley, Planta, 175: 71–81.CrossRefGoogle Scholar
  26. Luo, Z.-X., and Wu, R., 1988, A simple method for the transformation of rice via the pollen-tube pathway, Plant Mol. Biol. Rep., 6: 165–174.CrossRefGoogle Scholar
  27. McCabe, D.E., Swain, W.F., Martinell, B.J., and Christou, P., 1988, Stable transformation of soybean (Glycine max) by particle acceleration, Bio/ Technology, 6: 923–926.Google Scholar
  28. Neuhaus, G., Spangenberg, G., Mittelsten-Scheid, O., Schweiger, H.G., 1987, Transgenic rapeseed plants obtained by the microinjection of DNA into microspore-derived embryoids, Theor. Appi. Genet., 75: 30–36.Google Scholar
  29. Ohta, Y., 1986, High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA, Proc. Natl. Acad. Sci. USA, 83: 715–719.PubMedCrossRefGoogle Scholar
  30. Ozias-Akins, P., and Vasil, I.K., 1988, In vitro regeneration and genetic manipulation of grasses, Physiol. Plant., 73: 565–569.CrossRefGoogle Scholar
  31. Picard, E., Jacquemin, J.M., Granier, F., Bobin, M., and Forgeois, P., 1988, Genetic transformation of wheat (Triticum aestivum L.) by plasmid DNA uptake during pollen tube germination, 7th Int. Wheat Genetics Symposium, Cambridge, U.K., (1): 779–781.Google Scholar
  32. Potrykus, I., Saul, M.W., Petruska, J., Paszkowski, J., and Shillito, R., 1985, Direct gene transfer to cells of a graminaceous monocot, Mol. Gen. Genet., 199: 181–188.Google Scholar
  33. Reich, T.J., Iyer, V.N., and Miki, B.L., 1986, Efficient transformation of alfalfa protoplasts by the intranuclear microinjection of Ti plasmids, Bio/ Technology, 4: 1001–1004.Google Scholar
  34. Rhodes, C.A., Lowe, K.I.S., and Ruby, K-L., 1988, Plant regeneration from protoplasts isolated form embryogenic maize cell cultures, Bio/Technology, 6: 56–60.CrossRefGoogle Scholar
  35. Rhodes, C.A., Pierce, D.A., Mettler, I.J., Mascarenhas, D., and Detmar, J.J., 1988, Genetically transformed maize plants from protoplasts, Science, 240: 204–207.PubMedCrossRefGoogle Scholar
  36. Schweiger, H.-G., Dirk, J., Koop, H.-U., Kranz, E., Neuhaus, G., Spangenberg, G., and Wolff, D., 1987, Individual selection, culture and manipulation of higher plant cells, Theor. Appl. Genet., 73: 769–783.CrossRefGoogle Scholar
  37. Stolarz, A., and Lörz, H., 1986, Somatic embryogenesis, in vitro multiplication and plant regeneration from immature embryos of hexaploid Triticale (X Triticosecale Wittmack), Z. Pflanzenzüchtung, 96: 353–362.Google Scholar
  38. Töpfer, R., Gronenborn, B., Schell, J., and Steinbiss, H.-H., 1989, Uptake and transient expression of chimeric genes in seed-derived embryos, The Plant Cell, 1: 133–139.PubMedCrossRefGoogle Scholar
  39. Toriyama, K., Arimoto, Y., Uchimaya, H., and Hinata, K., 1988, Transgenic rice plants after direct gene transfer into protoplasts, Bio/Technology, 6: 1072–1074.CrossRefGoogle Scholar
  40. Vasil, I.K., 1987, Developing cell and tissue culture systems for the improvement of cereal and grass crops, J. Plant Physiol. 128: 193–218.CrossRefGoogle Scholar
  41. Wang, Y.C., Klein, T.M., Fromm, M., Cao, J., Sanford, J.C., and Wu, R., 1988, Transformation of rice, wheat and soybean by the particle bombardement method, Plant Molecular Biology, 11: 433–439.CrossRefGoogle Scholar
  42. Yamada, Y., Yang, Z.Q., and Tang, D.T., 1986, Plant regeneration from protoplast derived callus of rice, (Oryza sativa), Plant Cell Reports, 5: 85–88.CrossRefGoogle Scholar
  43. Zimny, J., and Lörz, H., 1989, High frequency of somatic embryogenesis and plant regeneration of rye (Secale cereale L.), Plant Breeding, 102: 89–100.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Horst Lörz
    • 1
  • Reinhold Brettschneider
    • 1
  • Sabine Hartke
    • 1
  • Ravinder Gill
    • 2
  • Erhard Kranz
    • 1
  • Peter Langridge
    • 3
  • Andrzej Stolarz
    • 1
  • Paul Lazzeri
    • 1
  1. 1.Max-Planck-Institut für ZüchtuchtungsforschungKöln 30Fed. Rep. of Germany
  2. 2.Bio-Organic Division, Plant Biotechnology SectBhabha Atomic Research CentreBombayIndia
  3. 3.Agricultural Biochemistry DepartmentWaite InstituteGlen OsmondAustralia

Personalised recommendations