In Vitro Culture of Rice: Transformation and Regeneration of Protoplasts

  • Thomas K. Hodges
  • Jianying Peng
  • Lisa Lee
  • David S. Koetje
Part of the Stadler Genetics Symposia Series book series (SGSS)


Rice (Oryza sativa L.) is the primary food source for about 40% of the people of the world (Yamada and Loh, 1984). Based upon population growth projections, rice yields must increase by over 5 million tons per year just to maintain current levels of rice consumption per person (IRRI, 1985). Because of the importance of rice production, extensive research efforts and progress have been made during the last 30 years to improve yields. Most of this research has been carried out in China, Japan, India, and at the International Rice Research Institute (IRRI) in the Philippines on the two major subspecies of O. sativa, the japonica and indica varieties. Japonica lines are grown primarily in temperate regions of the world, especially northern China and Japan. Researchers in these countries have improved the yield of these lines considerably during the past two decades. The indica varieties, which are more adapted to the humid tropics and are thus an important food source to a larger proportion of the human population, have been improved markedly at IRRI, primarily through conventional plant breeding. It is apparent that even higher performance rice cultivars will be needed in the future. Some improvements will continue through conventional breeding programs, but these programs will be most effective when coupled to the current advances in in vitro cell culture of rice and genetic engineering using the tools of cellular and molecular biology.


Somatic Embryogenesis Plant Regeneration Immature Embryo Transgenic Rice Plant Nurse Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdullah, R., Cocking, E. C., and Thompson, J. A., 1986, Efficient plant regeneration from rice protoplasts through somatic embryogenesis, Bio/Technology, 4: 1087–1090.CrossRefGoogle Scholar
  2. Abe, T. and Futsuhara, Y., 1984, Varietal difference of plant regeneration from root callus tissues in rice, Jpn. J. Breed., 34: 147–155.Google Scholar
  3. Abe, T. and Futsuhara, Y., 1986a, Genotypic variability for callus formation and plant regeneration in rice (Oryza sativa L.), Theor. Appl. Gen. 72: 3–10.CrossRefGoogle Scholar
  4. Abe, T. and Futsuhara, Y., 1986b, Plant regeneration from suspension cultures of rice (Oryza sativa), Jpn. J. Breed., 36: 1–6.CrossRefGoogle Scholar
  5. Baba, A., Hasezawa, S., and Syono, K., 1986, Cultivation of rice protoplasts and their transformation mediated by Agrobacterium spheroplasts, Plant Cell Phvsiol., 27: 463–471.Google Scholar
  6. Beck, E., Ludwig, G., Auerswald, E. A., Reiss, B., and Schaller, H., 1982, Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5, Gene, 19: 327–336.PubMedCrossRefGoogle Scholar
  7. Bhattacharya, P. and Sen, S.K., 1980, Potentiality of leaf sheath cells for regeneration of rice (Oryza sativa L.) plants, Theor. Appl. Genet., 58: 87–90.Google Scholar
  8. Bytebier, B., Deboeck, F., De Greve, H., Van Montagu, M., and Hernalsteens, JP., 1987, T-DNA organization in tumor cultures and transgenic plants of the monocotyledon Asparagus officinalis, Proc. Natl. Acad. Sci. USA, 84: 5345–5349.PubMedCrossRefGoogle Scholar
  9. Cai, Q., Zhou, Y., and Wu, S., 1978, A further study on the isolation and culture of rice (Oryza sativa L.) protoplasts, Acta Bot. Sinica, 20: 97–102.Google Scholar
  10. Chen, T. H., Lam, L., and Chen, S. C., 1985, Somatic embryogenesis and plant regeneration from cultured young inflorescences of Oryza sativa, Plant Cell Tissue Culture, 4: 51–54.CrossRefGoogle Scholar
  11. Chu, C. C., Wang, C. C., Sun, C. S., Hsu, C., Yin, K. C., Chu, C. Y., and Bi, F. Y., 1975, Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources, Sci. Sin., 18: 659–668.Google Scholar
  12. Conger, B. V., 1981, Agronomic Crops, in: “Cloning Agricultural Plants via In Vitro Techniques”, Conger, B. V., ed., CRC Press, Boca Raton, Fla., pp. 165–215.Google Scholar
  13. Coulibaly, M. Y. and Demarly, Y., 1986, Regeneration of plantlets from protoplasts of rice, Oryza sativa L., Z. Planzenzüchtg, 96: 79–81.Google Scholar
  14. Deka, P. C. and Sen, S.K., 1976, Differentiation of calli originated from isolated protoplasts of rice (Oryza sativa L.) through plating techniques, Mol. Gen. Genet., 145: 239–243.CrossRefGoogle Scholar
  15. Flick, C. E., and Evans, D. A., 1984, Tobacco in:, “Handbook of Plant Cell Culture (vol. 2)”, Sharp, W. R., Evans, D. A., Ammirato, P. V., and Yamada, Y., eds., Macmillan Publishing Co., New York, NY, pp. 606–630.Google Scholar
  16. Frearson, E. M., Power, J. B., and Cocking, E. C., 1973, The isolation, culture and regeneration of Petunia leaf protoplasts, Dev. Biol., 33: 130–137.PubMedCrossRefGoogle Scholar
  17. Fromm, M.E., Taylor, L. P., and Walbot, V., 1986, Stable transformation of maize after gene transfer by electroporation, Nature, 319: 791–793.PubMedCrossRefGoogle Scholar
  18. Fujimura, T., Sakurai, M., Akagi, H., Negishi, T., and Hirose, A., 1985, Regeneration of rice plants from protoplasts, Plant Tiss. Cult. Lett., 2: 74–75.CrossRefGoogle Scholar
  19. Gamborg, O. L., Miller, R. A. and Ojima, K., 1968, Nutrient requirements of suspension cultures of soybean root cells, Exp. Cell Res., 50: 151–158.PubMedCrossRefGoogle Scholar
  20. Green, C. E., and Phillips, R. L., 1975, Plant regeneration from tissue cultures of maize, Crop Sci., 15: 417–421.CrossRefGoogle Scholar
  21. Guha-Mukherjee, S., 1973, Genotypic differences in the in vitro formation of embryoids from rice pollen, J. Exp. Bot., 21: 139–144.CrossRefGoogle Scholar
  22. Hauptmann, R. M., Vasil, V., Ozias-Akins, P., Tabaeizadeh, Z., Rogers, S.G., Fraley, R. T., Horsch, R. B., and Vasil, I. K., 1988, Evaluation of selectable markers for obtaining stable transformants in the gramineae, Plant Physiol., 86: 602–606.PubMedCrossRefGoogle Scholar
  23. Henke, R. R., Mansur, M. A., and Constantin, M. J., 1978, Organogenesis and plantlet formation from organ-and seedling-derived calli of rice (Oryza sativa), Physiol. Plant., 44: 11–14.CrossRefGoogle Scholar
  24. Heyser, J. W., Dykes, T. A., DeMott, K. J., and Nabors, M. W., 1983, High frequency, long-term regeneration of rice from callus culture, Plant Sci. Lett., 29: 175–182.CrossRefGoogle Scholar
  25. Hodges, T. K., Kamo, K. K., Becwar, M. R., and Schroll, S., 1985, Regeneration of maize, in: “Biotechnology in Plant Science: Relevance to Agriculture in the Nineteen Eighties”, Zaitlin, M., Day, P., and Hollaender, A., eds., Academic Press, Orlando, FL, pp. 15–33.Google Scholar
  26. Hodges, T. K., Kamo, K. K., Imbrie, C. W., and Becwar, M. R., 1986, Genotype specificity of somatic embryogenesis and regeneration in maize, BioTechnology, 4: 219–223.Google Scholar
  27. IRRI, 1985, “International Rice Research: 25 Years of Partnership”, International Rice Research Institute, Los Banos, Laguna, Philippines.Google Scholar
  28. Jefferson, R. A., Kavanagh, T. A., and Bevan, M. W., 1987, GUS fusions: ßglucuronidase as a sensitive and versatile gene fusion marker in higher plants, EMBO J. 6: 3901–3907.PubMedGoogle Scholar
  29. Kao, K. N., 1977, Chromosomal behavior in somatic hybrids of soybean Nicotiana glauca, Mol. Gen. Genet., 150: 225–230.CrossRefGoogle Scholar
  30. Kao, K. N. and Michayluk, M. R., 1975, Nutritional requirements for growth of Vicia hajastana cells and protoplasts at a very low population density in liquid media, Planta, 126: 105–110.CrossRefGoogle Scholar
  31. Kawata, S. and Ishihara, A., 1968, The regeneration of rice plant, Oryza sativa L., in the callus derived from the seminal root, Proc. Jpn. Acad., 44: 549.Google Scholar
  32. Klein, T. M., Harper, E. C., Svab, Z., Sanford, J. C., Fromm, M. E., and Maliga, P., 1988, Stable genetic transformation of intact Nicotiana cells by the particle bombardment process, Proc. Natl. Acad. Sci. USA, 85: 8502–8505.PubMedCrossRefGoogle Scholar
  33. Koetje, D. S., Grimes, H. D., Wang, Y. C., and Hodges, T. K., 1989, Regeneration of indica rice (Oryza sativa L.) from primary callus derived from immature embryos, J. Plant Physiol., in review.Google Scholar
  34. Krens, F. A., Molendijk, L., Wullems, G. J., and Schilperoort, R. A., 1982, In vitrotransformation of plant protoplasts with Ti-plasmid DNA, Nature, 296: 72–74.CrossRefGoogle Scholar
  35. Kyozuka, J., Hayashi, Y., and Shimamoto, K., 1987, High frequency plant regeneration from rice protoplasts by novel nurse culture methods, Mol. Gen. Genet., 206: 408–413.CrossRefGoogle Scholar
  36. Lai, K. L., and Liu, L. F., 1982, Induction and plant regeneration of callus from immature embryo of rice plants (Oryza sativa L.), Jpn. J. Crop Sci., 51: 70–74.CrossRefGoogle Scholar
  37. Lai, K. L., and Liu, L. F., 1986, Further studies on the variability of plant regeneration from young embryo callus cultures of rice plants (Oryza sativa L.), Jpn, J. Crop Sci., 55: 41–46.CrossRefGoogle Scholar
  38. Lee, L., Schroll, R. E., Grimes, H. D., and Hodges, T. K., 1989, Plant regeneration from indica rice (Oryza sativa L.) protoplasts, Planta, in review.Google Scholar
  39. Linsmaier, E. M. and Skoog, F., 1965, Organic growth factor requirements of tobacco tissue cultures, Physiol. Plant., 18: 100–127.CrossRefGoogle Scholar
  40. Luo, Z.X. and Wu, R., 1988, A simple method for the transformation of rice via the pollen-tube pathway, Plant Molec. Biol. Rept., 6: 165–174.CrossRefGoogle Scholar
  41. Lyznik, L. A., Ryan, R., Ritchie, S., and Hodges, T. K., 1989, Stable PEG-mediated cotransformation of maize protoplasts with uidA and neo genes, in review.Google Scholar
  42. Maeda, E., 1965, Callus formation and isolation of single cells from rice seedlings, Proc. Crop Sci. Jpn., 34: 139–147.CrossRefGoogle Scholar
  43. Maeda, E., 1969, Multiplication of rice cells freely suspended in vitro, Proc. Crop Sci. Jpn., 38: 535–546.CrossRefGoogle Scholar
  44. Maeda, E., 1973, Proliferation and properties of rice cells subcultured in a liquid medium, Proc. Crop Sci. Jpn., 42: 110–115.CrossRefGoogle Scholar
  45. Mettler, I. J., 1987, A simple and rapid method for minipreparation of DNA from tissue cultured plant cells, Plant Molec. Biol. Rept., 5: 346–349.CrossRefGoogle Scholar
  46. Miah, M. A. A., Earle, E. D., and Khush, G. S., 1985, Inheritance of callus formation ability in anther cultures of rice, Oryza sativa L., Theor. Appl. Genet., 70: 113–116.Google Scholar
  47. Müller, A. J. and Grafe, R., 1978, Isolation and characterization of cell lines of Nicotiana tabacum lacking nitrate reductase, Mol. Gen. Genet., 161: 67–76.CrossRefGoogle Scholar
  48. Murashige, T. and Skoog, F., 1962, A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant., 15: 473–497.CrossRefGoogle Scholar
  49. Niizeki, H. and Oono, K.I, 1968, Induction of haploid rice plant from anther culture, Proc. Jpn. Acad., 44: 554–557.Google Scholar
  50. Niizeki, H. and Kita, F., 1981, Cell division of rice and soybean and their fused protoplasts, Jpn. J. Breed., 31: 161–167.Google Scholar
  51. Nishi, T., Yamada, Y., and Takahashi, E., 1968, Organ redifferentiation and plant regeneration in rice callus, Nature, 219: 508–509.PubMedCrossRefGoogle Scholar
  52. Ogura, H., Kyozuka, J. Hayashi, Y., Koba, T., and Shimamoto, K., 1987, Field performance and cytology of protoplast-derived rice (Oryza sativa): high yield and low degree of variation of four japonica cultivars, Theor. Appl. Genet., 74: 670–676.CrossRefGoogle Scholar
  53. Ohira, K., Ojima, K., and Fujiwara, A., 1973, Studies on the nutrition of rice cell culture I. A simple, defined medium for rapid growth in suspension culture, Plant & Cell Physiol., 14: 1113–1121.Google Scholar
  54. Ou-Lee, T.M., Turgeon, R., and Wu, R., 1986, Expression of a foreign gene linked to either a plant-virus or a Drosophila promoter, after electroporation of protoplast of rice, wheat, and sorghum, Proc. Natl. Acad. Sci. USA, 83: 6815–6819.PubMedCrossRefGoogle Scholar
  55. Peng, J. and Hodges, T. K., 1989, Genetic analysis of plant regeneration in rice ( Oryza sativaL.), In Vitro: Cellular and Devel. Biol., in press.Google Scholar
  56. Potrykus, I., Saul, M.W., Petruska, J., Paszkowski, J., and Shillito, R. D., 1985, Direct gene transfer to cells of a graminaceous monocot, Molec. Gen. Genet., 199: 183–188.CrossRefGoogle Scholar
  57. Schocher, R J., Shillito, R. D., Saul, M. W., Paszkowski, J., and Potrykus, I., 1986, Co-transformation of unlinked foreign genes into plants by direct gene transfer, Bio/Technology, 4: 1093–1096.CrossRefGoogle Scholar
  58. Sears, R. G. and Deckard, E. L., 1982, Tissue culture variability in wheat: Callus induction and plant regeneration, Crop Sci., 22: 546–550.CrossRefGoogle Scholar
  59. Shenk, R. V. and Hildebrandt, A. C., 1972, Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures, Can. J. Bot., 50: 199–204.CrossRefGoogle Scholar
  60. Shimamoto, K., Terada, R., Izawa, T., and Fujimoto, H., 1989, Transgenic rice plants: expression and transmission of foreign genes introduced by electroporation, in press.Google Scholar
  61. Siriwardana, S, and Nabors, M. W., 1983, Tryptophan enhancement of somatic embryogenesis in rice, Plant Physiol., 73: 142–146.PubMedCrossRefGoogle Scholar
  62. Southern, E., 1975, Detection of specific sequences among DNA fragments separated by gel electrophoresis, J. Mol. Biol., 98: 503–517.PubMedCrossRefGoogle Scholar
  63. Tamura, S., 1968, Shoot formation in calli originated from rice embryo, Proc. Jpn. Acad., 44: 544–548.Google Scholar
  64. Thompson, J. A., Abdullah, R., and Cocking, E. C., 1986, Protoplast culture of rice (Oryza sativa L.) using media solidified with agarose, Plant Sci., 47: 123–133.CrossRefGoogle Scholar
  65. Toriyama, K. and Hinata, K., 1985, Cell suspension and protoplast culture in rice, Plant Sci., 41: 179–183.CrossRefGoogle Scholar
  66. Toriyama, K., Hinata, K., and Sasaki, T., 1986, Haploid and diploid plant regeneration from protoplasts of anther callus in rice, Theor. Appl. Genet., 73: 16–19.CrossRefGoogle Scholar
  67. Toriyama, K., Arimoto, Y., Uchimiya, H., and Hinata, K., 1988, Transgenic rice plants after direct gene transfer into protoplasts, Bio/Technology, 6: 1072–1074.CrossRefGoogle Scholar
  68. Uchimiya, H., Fushimi, T., Hashimoto, H., Harada, H., Syono, K., and Sugawara, Y., 1986, Expression of a foreign gene in callus derived from DNA treated protoplasts of rice (Oryza sativa L.), Mol. Gen. Genet., 16: 204–207.CrossRefGoogle Scholar
  69. Wakasa, K., Kobayashi, M., and Kamada, H., 1984, Colony formation from protoplasts of nitrate reductase-deficient rice cell lines, J. Plant Physiol., 117: 223–231.CrossRefGoogle Scholar
  70. Wernicke, W. and Brettell, R., 1980, Somatic embryogenesis from Sorghum bicolor leaves, Nature, 287: 138–139.CrossRefGoogle Scholar
  71. Wernicke, W., Brettell, R.I.S., Wakizuka, T., and Potrykus, I., 1981, Adventitious embryoid and root formation from rice leaves, Z Pflanzenphysiol., 103: 361–365.Google Scholar
  72. Wernicke, W., Gorst, J., and Milkovits, L., 1986, The ambiguous role of 2,4dichlorophenoxyacetic acid in wheat tissue culture, Physiol. Plant., 68: 597–602.CrossRefGoogle Scholar
  73. Yamada, Y. and Loh, W. H., 1984, Rice, in: “Handbook of Plant Cell Culture”, eds. Ammirato, P. V., Evans, D. A., Sharp, W. R. and Yamada Y., MacMillian Co., vol. 3, pp. 151–170.Google Scholar
  74. Yamada, Y., Yang, Z. Q., and Tang, D. T., 1986, Plant regeneration from protoplast derived callus of rice (Oryza sativa), Plant Cell Rept., 5: 85–88.CrossRefGoogle Scholar
  75. Yang, H., Zhang, H.M., Davey, M. R., Mulligan, B. J., and Cocking, E. C., 1988, Production of kanamycin resistant rice tissues following DNA uptake into protoplasts, Plant Cell Rept., 7: 421–425.Google Scholar
  76. Ye, H., 1984, Studies on cell suspension culture and plant regeneration in rice, Acta Botanica Senica, 26: 52–59.Google Scholar
  77. Zhang, H.M., Yang, H., Rech, E. L., Golds, T. J., Davis, A. S., Mulligan, B. J., Cocking, E. C., and Davey, M. R., 1988, Transgenic rice plants produced by electroporation-mediated plasmid uptake into protoplasts, Plant Cell Rept., 7: 379–384.Google Scholar
  78. Zhou, G.Y., Weng, J., Zeng, Y., Huang, J., Qian, S., and Liu, G., 1983, Introduction of exogenous DNA into cotton embryos, Meth, Enz., 101: 432–455.Google Scholar
  79. Zimny, J., and Lorz, H., 1986, Plant regeneration and initiation of cell suspensions from root-tip derived callus of Oryza sativa (rice), Plant Cell Rept., 5: 89–92.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Thomas K. Hodges
    • 1
  • Jianying Peng
    • 1
  • Lisa Lee
    • 1
  • David S. Koetje
    • 1
  1. 1.Department of Botany and Plant PathologyPurdue UniversityWest LafayetteUSA

Personalised recommendations