Skip to main content

Wheat X Maize and Other Wide Sexual Hybrids: Their Potential for Genetic Manipulation and Crop Improvement

  • Chapter

Part of the book series: Stadler Genetics Symposia Series ((SGSS))

Abstract

“The view generally entertained by naturalists is that species, when intercrossed, have been specially endowed with the quality of sterility, in order to prevent the confusion of all organic forms.” With these words Charles Darwin opens his chapter on hybridism in The Origin of Species. Darwin, however, goes on to argue that the degree of sterility in crosses is not a specially endowed quality but is highly variable, arising through the processes of natural selection by the accumulation of what we would now call genetic differences.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdullah, R., Cocking, E.C., and Thompson, J.A., 1986, Efficient plant regeneration from rice protoplasts through somatic embryogenesis, Bio/Technology, 4: 1087–1090.

    Article  Google Scholar 

  • Anderson, M.K., and Reinbergs, E., 1985, Barley breeding, in: “Barley”, D.C. Rasmusson, ed., American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Publishers Madison, Wisconsin, pp. 231–268.

    Google Scholar 

  • Baker, B., Schell, J., Lörz, H., and Fedoroff, N., 1986, Transposition of the maize controlling element “Activator” in tobacco, Proc. Natl. Acad. Sci. USA, 83: 4844–4848.

    Article  CAS  Google Scholar 

  • Barclay, I.R., 1975, High frequencies of haploid production in wheat (Triticum aestivum) by chromosome elimination, Nature. 256: 410–411.

    Article  Google Scholar 

  • Bennett, M.D., and Smith, J.B., 1976, Nuclear DNA amounts in angiosperms, Philos. Trans. Roy. Soc. Lond. Ser. B, 274: 227–274.

    Article  CAS  Google Scholar 

  • Bennett, M.D., Smith, J.B., and Barclay, I.R., 1975, Early seed development in the Triticeae, Phil. Trans. R. Soc. Lond. Ser. B, 272: 199–227.

    Article  Google Scholar 

  • Bennetzen, J.L., Qin, M.M., Ingels, S., and Ellinghoe, A.H., 1988, Allele-specific and mutator-associated instability at the Rpl disease resistance locus of maize, Nature, 332: 369–370.

    Article  Google Scholar 

  • Bostock, C.J., 1986, Mechanisms of DNA sequence amplification and their evolutionary consequences, Phil Trans R Soc. Lond. Ser, B, 312: 261–273.

    Article  CAS  Google Scholar 

  • Botterman, J., and Leemans, J., 1988, Engineering herbicide resistance in plants, Trends in Genetics, 4: 219–222.

    Article  PubMed  CAS  Google Scholar 

  • Brookfield, J.F.Y., 1986, The population biology of transposable elements, Phil. Trans. R. Soc. Lond. Ser. B, 312: 217–226.

    Article  CAS  Google Scholar 

  • Burr, B., Burr, F.A., Thompson, K.H., Albertson, M.C., and Stuber, C.W., 1988, Gene mapping with recombinant inbreds in maize, Genetics, 118: 519–526.

    PubMed  CAS  Google Scholar 

  • Chao, S., Raines, C.A., Longstaff, M., Sharp, P.J., Gale, M.D., and Dyer, T.A., 1989, Copy number and chromosomal location in wheat and some of its close relatives of the genes for enzymes involved in photosynthetic CO, fixation, Mol. Gen. Genet., (in press).

    Google Scholar 

  • Chapman, V., Miller, T.E., and Riley, R., 1976, Equivalence of the A genome of bread wheat and that of Triticum urartu, Genet. Res. Camb., 27: 69–76.

    Article  Google Scholar 

  • Choo, T.M., Christie, B.R., and Reinbergs, E., 1979, Doubled haploids for estimating genetic variances and a scheme for population improvement in self-pollinating crops, Theor. Appl. Genet., 54: 267–271.

    Article  Google Scholar 

  • Colot, V., Robert, L.S., Kavanagh, T.A., Bevan, M.W., and Thompson, R.D., 1987, Localization of sequences in wheat endosperm protein genes which confer tissue-specific expression in tobacco, The EMBO J., 6: 3559–3564.

    CAS  Google Scholar 

  • Comeau, A., Plourde, A., St. Pierre, C.A., and Nadeau, P., 1988, Production of doubled haploid wheat lines by wheat x maize hybridization (Abstract), Genome, 30: Supplement 1, p 482.

    Article  Google Scholar 

  • Doebley, J., and Sisco, P.H., 1989, On the origin of the maize male sterile cytoplasms: its completely unimportant, that’s why its so interesting, Maize Genetics Cooperation News Letter, 63: 108–109.

    Google Scholar 

  • Dover, G.A., 1982, Molecular drive: a cohesive mode of species evolution, Nature, 299: 111–117.

    Article  PubMed  CAS  Google Scholar 

  • Dover, G.A., and Tautz, D., 1986, Conservation and divergence in multigene families: alternatives to selection and drift, Phil. Trans. R. Soc. Lond. Ser. B, 312: 275–289.

    Article  CAS  Google Scholar 

  • Driscoll, C.J., 1981, Perspectives in chromosome manipulation, Phil. Trans. R. Soc. Lond. Ser. B, 292: 535–546.

    Article  Google Scholar 

  • Dvorak, J., 1976, The relationship between the genome of Triticum urartu and the A and B genomes of Triticum aestivum. Can. J. Genet. Cytol. 18: 371–377.

    Google Scholar 

  • Dvorak, J., 1983, The origin of wheat chromosomes 4A and 4B and their genome reallocation, Can. J. Genet. Cytol., 25: 210–214.

    Google Scholar 

  • Dvorak, J., 1988, Cytogenetical and molecular inferences about the evolution of wheat, in: “Proc. 7th Int. Wheat Genet. Symp., Vol. I”, T.E. Miller and R.M.D. Koebner, eds., Institute of Plant Science Research, Cambridge, U.K., pp. 47–51.

    Google Scholar 

  • Ellis, J.G., Lawrence, G.J., Peacock, W.J., and Pryor, A.J., 1988, Approaches to cloning plant genes conferring resistance to fungal pathogens, Annu. Rev. Phytopathol., 26: 245–263.

    Article  CAS  Google Scholar 

  • Endo, T.R., 1988a, Chromosome mutations induced by gametocidal chromosomes in common wheat, in: “Proc. 7th Int. Wheat Genet. Symp., Vol. I”, T.E. Miller and R.M.D. Koebner, eds., Institute of Plant Science Research, Cambridge, U.K., pp. 259–265.

    Google Scholar 

  • Endo, T.R., 1988b, Induction of chromosomal structural changes by a chromosome of Aegilops cylindrica L. in common wheat, J. Hered., 79: 366–370.

    Google Scholar 

  • Falk, D.E., and Kasha, K.J., 1981, Comparison of the crossability of rye (Secale cereale) and Hordeum bulbosum onto wheat (Triticum aestivum), Can. J. Genet. Cytol., 23: 81–88.

    Google Scholar 

  • Falk, D.E., and Kasha, K.J., 1983, Genetic studies of the crossability of hexaploid wheat with rye and Hordeum bulbosum, Theor. Appl. Genet., 64: 303–307.

    Article  Google Scholar 

  • Farrer, W., 1904, Some notes on the wheat “Bobs”, its peculiarities, economic value and origin, Agric. Gazette of N.S.W., 15: 849–854.

    Google Scholar 

  • Fedak, G., 1985a, Wide crosses in Hordeum, in: “Barley”, D.C. Rasmusson, ed., American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Publishers Madison, Wisconsin, pp. 155–186.

    Google Scholar 

  • Fedak, G., 1985b, Alien species as sources of physiological traits for wheat improvement, Euphytica, 34: 673–680.

    Article  Google Scholar 

  • Fedak, G., 1989, Wide hybridization for cereal improvement, in: “Current options for cereal development”, M. Malusznyski, ed., Kluwer Academic Publishers, Dortrecht, Boston, London, pp. 39–48.

    Chapter  Google Scholar 

  • Fedoroff, N., Furtek, D.B., and Nelson, O.E., 1984, Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element Activator (Ac), Proc. Natl. Acad. Sci. USA, 81: 3825–3829.

    Article  PubMed  CAS  Google Scholar 

  • Finch, R.A., Miller, T.E., and Bennett, M.D., 1984, “Cuckoo” Aegilops addition chromosome in wheat ensures its transmission by causing chromosome breaks in meiospores lacking it, Chromosoma, 90: 84–88.

    Article  Google Scholar 

  • Flavell, R.B., 1986, Repetitive DNA and chromosome evolution in plants, Phil. Trans. R. Soc. Lond. Ser. B, 312: 227–242.

    Article  CAS  Google Scholar 

  • Flavell, R.B., Bennett, M.D., Seal, A.G., and Hutchinson, J., 1987, Chromosome structure and organization, in: “Wheat breeding: its scientific basis”, F.G.H. Lupton, ed., Chapman and Hall, London, New York, pp. 211–268.

    Google Scholar 

  • Flavell, R.B., Harris, N., O’Dell, M., Sardana, R.K., and Jackson, S., 1988, Transposable elements and the control of ribosomal RNA gene expression in wheat, in: “Proc. 7th Int. Wheat Genet. Symp., Vol. I”, T.E. Miller and R.M.D. Koebner, eds., Institute of Plant Science Research, Cambridge, U.K., pp. 33–37.

    Google Scholar 

  • Furuta, Y., Nishikawa, K., and Makino, T., 1975, Intraspecific variation of nuclear DNA content in Aegilops squarrosa, Jap. J. Genet., 50: 257–263.

    Article  Google Scholar 

  • Furuta, Y., Nishikawa, K., Makino, T., and Sawai, Y., 1984, Variation in DNA content of 21 individual chromosomes among six subspecies in common wheat, Jpn. J. Genet., 59: 83–90.

    Article  Google Scholar 

  • Gale, M.D., and Miller, T.E., 1987, The introduction of alien genetic variation in wheat, in: “Wheat Breeding: Its scientific basis”, F.G.H. Lupton, ed., Chapman and Hall, London, New York, pp. 173–210.

    Google Scholar 

  • Gerstel, D.U., and Burns, J.A., 1966, Chromosomes of unusual length in hybrids between two species of Nicotiana, Chromosomes Today, 1: 41–56.

    Google Scholar 

  • Gerstel, D.U., and Burns, J.A., 1976, Enlarged euchromatic chromosomes (“megachromosomes”) in hybrids between Nicotiana tabacum and N. plumbaginifolia, Genetica, 46: 139–153.

    Article  Google Scholar 

  • Gill, B.S., and Appels, R., 1988, Relationships between Nor-loci from different Triticea species, Plant Syst. Evol., 160: 77–89.

    Article  Google Scholar 

  • Goodman, R.M., Hauptli, H., Crossway, A., and Knauf, V.C., 1987, Gene transfer in crop improvement, Science, 236: 48–54.

    Article  PubMed  CAS  Google Scholar 

  • Greenblatt, I.R., 1984, A chromosome replication pattern deduced from pericarp phenotypes resulting from movements of the transposable element, Modulator, in maize, Genetics, 108: 471–485.

    CAS  Google Scholar 

  • Gregory, R.S., 1987, Triticale breeding, in: “Wheat breeding: its scientific basis”, F.G.H. Lupton, ed., Chapman and Hall, London, New York, pp. 269–286.

    Google Scholar 

  • Hake, S., Vollbrecht, E., and Freeling, M., 1989, Cloning Knotted, the dominant morphological mutant in maize using Ds2 as a transposon tag, The EMBO J., 8: 15–22.

    CAS  Google Scholar 

  • Harberd, N.P., Flavell, R.B., and Thompson, R.D., 1987, Identification of a transposon-like insertion in a Glu-1 allele of wheat, Mol. Gen. Genet., 209: 326–332.

    Article  PubMed  CAS  Google Scholar 

  • Harlan, J.R., De Wet, J.M.J., and Price, E.G., 1973, Comparative evolution of cereals, Evolution, 27: 311–325.

    Article  Google Scholar 

  • Hawkes, J.G., 1983, “The diversity of crop plants”, President and Fellows of Harvard College, U.S.A., Cambridge (Massachusetts), London.

    Google Scholar 

  • Ho, K.M., and Jones, G.E., 1980, Mingo barley, Can. J. Plant Sci., 60: 279–280.

    Article  Google Scholar 

  • Hutchinson, J., 1959, “The families of flowering plants. Vol. II. Monocotyledons”, Clarendon Press, Oxford.

    Google Scholar 

  • Islam, A.K.M., Shepherd, K.W., and Sparrow, D.H.B., 1978, Production and characterization of wheat-barley addition lines, in: “Proc. 5th Int. Wheat Genet. Symp.”, New Delhi, pp. 365–371.

    Google Scholar 

  • Islam, A.K.M.R., Shepherd, K.W., and Sparrow, D.H.B., 1981, Isolation and characterization of euplasmic wheat-barley chromosome addition lines, Heredity, 46: 161–174.

    Article  Google Scholar 

  • James, J., 1978, New maize x Tripsacum hybrids for maize improvement, Euphytica, 28: 239–247.

    Article  Google Scholar 

  • James, J., 1979, New types of maize x Tripsacum and maize x sorghum hybrids - their use in maize improvement, in: “Proc. 10th meeting of the maize and sorghum section of EUCARPIA”, Varna, pp. 120–125.

    Google Scholar 

  • Johns, M.A., Mottinger, J., and Freeling, M., 1985, A low copy number, copia-like transposon in maize, The EMBO J., 4: 1093–1102.

    CAS  Google Scholar 

  • Kasha, K.J., 1974, Haploids from somatic cells, in: “Haploids in higher plants, Proc. 1st Int. Symp., Guelph, K.J., Kasha, ed., University of Guelph, Ontario, pp. 67–87.

    Google Scholar 

  • Kimber, G., 1988, Evolutionary patterns in the wheat group, in: “Proc. 7th Int. Wheat Genet. Symp., Vol. I”, T.E. Miller and R.M.D. Koebner, eds., Institute of Plant Science Research, Cambridge, U.K., pp. 47–51.

    Google Scholar 

  • Knapp, S., Coupland, G., Uhrig, H., Starlinger, P., and Salamini, F., 1988, Transposition of the maize transposable element Ac in Solanum tuberosum, Mol. Gen. Genet., 213: 285–290.

    Article  CAS  Google Scholar 

  • Kruse, A., 1973, Hordeum x Triticum hybrids, Hereditas, 73: 157–161.

    Google Scholar 

  • Kruse, A., 1976, Reciprocal hybrids between the genera Hordeum, Secale and Triticum, Hereditas, 84: 244.

    Google Scholar 

  • Lambowitz, A.M., 1989, Infectious introns, Cell, 56: 323–326.

    Article  PubMed  CAS  Google Scholar 

  • Lander, E.S., and Botstein, D., 1989, Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps, Genetics, 121: 185–199.

    PubMed  CAS  Google Scholar 

  • Lange, W., and Balkema-Boomstra, A.G., 1988, The use of wild species in breeding barley and wheat, with special reference to the progenitors of the cultivated species, in: “Cereal breeding related to integrated cereal production”, M.L. Jorna and L.A.J. Slootmaker, eds., Pudoc, Wageningen, pp. 157–178.

    Google Scholar 

  • Lange, W., and Riley, R., 1973, The position on chromosome 5B of wheat of the locus determining crossability with rye, Genet. Res. Camb., 22: 143–153.

    Article  Google Scholar 

  • Laurie, D.A., 1989a, Factors affecting the frequency of fertilization in Triticum aestivum cv. Highbury x Zea mays cv. Seneca 60 crosses, Plant Breeding, 103: 133–140.

    Article  Google Scholar 

  • Laurie, D.A., 1989b, The frequency of fertilization in wheat x pearl millet crosses, Genome, (in press).

    Google Scholar 

  • Laurie, D.A., and Bennett, M.D., 1985, Nuclear DNA content in the genera Zea and Sorghum. Intergeneric, interspecific and intraspecific variation, Heredity, 55: 307–313.

    Article  Google Scholar 

  • Laurie, D.A., and Bennett, M.D., 1986, Wheat x maize hybridization, Can. J. Genet. Cytol., 28: 313–316.

    Google Scholar 

  • Laurie, D.A., and Bennett, M.D., 1987, The effect of the crossability loci Kr1 and Kr2 on fertilization frequency in hexaploid wheat x maize crosses, Theor. Appl. Genet., 73: 403–409.

    Article  Google Scholar 

  • Laurie, D.A., and Bennett, M.D., 1988a, Chromosome behaviour in wheat x maize, wheat x sorghum and barley x maize crosses, in: “Kew Chromosome Conference III”, P.E. Brandham, ed., Her Majesty’s Stationary Office, London, pp. 167–177.

    Google Scholar 

  • Laurie, D.A., and Bennett, M.D., 1988b, Cytological evidence for fertilization in hexaploid wheat x sorghum crosses, Plant Breeding, 100: 73–82.

    Article  Google Scholar 

  • Laurie, D.A., and Bennett, M.D., 1988c, The production of haploid wheat plants from wheat x maize crosses, Theor. Appl. Genet., 76: 393–397.

    Article  Google Scholar 

  • Laurie, D.A., and Bennett, M.D., 1989, The timing of chromosome elimination in hexaploid wheat x maize crosses, Genome, 32: 953–961.

    Article  Google Scholar 

  • Masson, P., and Fedoroff, N.V., 1989, Mobility of the maize Suppressormutator element in transgenic tobacco cells, Proc. Natl. Acad. Sci. USA, 86: 2219–2223.

    Article  PubMed  CAS  Google Scholar 

  • Miller, T.E., 1983, Preferential transmission of alien chromosomes in wheat, in: “Kew Chromosome Conference II”, P.E. Brandham and M.D. Bennett, eds., George Allen and Unwin, London, pp. 173–182.

    Google Scholar 

  • Miller, T.E., and Chapman, V., 1976, Aneuhaploids in bread wheat, Genet. Res. Camb., 28: 37–45.

    Article  Google Scholar 

  • Miller, T.E., Reader, S.M., and Gale, M.D., 1983, The effect of homoeologous group 3 chromosomes on chromosome pairing and crossability in Triticum aestivum, Can. J. Genet. Cytol., 25: 634–641.

    Google Scholar 

  • Miller, T.E., Shepherd, K.W., and Riley, R., 1981, The relationship of chromosome 4A of diploid wheat to that of hexaploid wheat: a clarification of an earlier study, Cer. Res. Commun., 9: 327–329.

    CAS  Google Scholar 

  • Mitchell, L.E., Dennis, E.S., and Peacock, W.J., 1989, Molecular analysis of an alcohol dehydrogenase (Adh) gene from chromosome 1 of wheat, Genome, 32: 349–358.

    Article  PubMed  CAS  Google Scholar 

  • Moav, J., Moav, R., and Zohary, D., 1968, Spontaneous morphological alterations in Nicotiana hybrids, Genetics, 59: 57–63.

    PubMed  CAS  Google Scholar 

  • Motto, M., Maddaloni, M., Ponziani, G., Brembilla, M., Marotta, R., Di Fonzo, N., Soave, C., Thompson, R., and Salamini, F., 1988, Molecular cloning of the o2-m5 allele of Zea mays using transposon tagging, Mol. Gen. Genet., 212: 488–494.

    Article  CAS  Google Scholar 

  • Mujeeb-Kazi, A., and Kimber, G., 1985, The production, cytology and practicality of wide hybrids in the Triticeae, Cereal Res. Commun., 13: 111–124.

    Google Scholar 

  • Müntzing, A., 1936, Über die Entstehungsweise 56-Chromosomiger Weizen-Roggen Bastarde, Der Zuchter, 8: 188–191.

    Google Scholar 

  • O’Donoughue, L.S., and Bennett, M.D., 1988, Wide hybridization between relatives of bread wheat and maize, in: “Proc. 7th Int. Wheat Genet. Symp., Vol. I”, T.E. Miller and R.M.D. Koebner, eds., Institute of Plant Science Research, Cambridge, U.K., pp. 397–402.

    Google Scholar 

  • Paterson, A.H., Lander, E.S., Hewitt, J.D., Peterson, S., Lincoln, S., and Tanksley, S., 1988, Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms, Nature, 335: 721–726.

    Article  PubMed  CAS  Google Scholar 

  • Pereira, A., and Saedler, H., 1989, Transpositional behavior of the maize En/Spm element in transgenic tobacco, The EMBO J., 8: 1315–1321.

    CAS  Google Scholar 

  • Pickering, R.A., 1983, The influence of genotype on doubled haploid barley production, Euphytica, 32: 863–876.

    Article  Google Scholar 

  • Price, H.J., Chambers, K.L., Bachmann, K., and Riggs, J., 1983, Inheritance of nuclear 2C DNA content variation in intraspecific and interspecific hybrids of Microseris (Asteraceae), Am. J. Bot., 70: 1133–1138.

    Article  CAS  Google Scholar 

  • Prioli, L.M., and Söndahl, M.R., 1989, Plant regeneration and recovery of fertile plants from protoplasts of maize (Zea mays L.), Bio/Technology, 7: 589–594.

    Article  Google Scholar 

  • Riley, R., and Chapman, V., 1967, The inheritance in wheat of crossability with rye, Genet. Res. Camb., 9: 259–267.

    Article  Google Scholar 

  • Rimpau, W., 1891, Kreuzungsprodukte landwirtschaftlicher Kulturplanzen, Landwirtschaftl. Jahrb., 20: 335–371.

    Google Scholar 

  • Robertson, D.S., 1978, Characterization of a mutator system in maize, Mut. Res., 51: 21–28.

    Google Scholar 

  • Robertson, D.S., 1981, Tests of two models for the transmission of the Mu mutator in maize, Mol. Gen. Genet., 183: 51–53.

    Article  Google Scholar 

  • Sapre, A.B., and Deshpande, D.S., 1987, Origin of B chromosomes in Coix L. through spontaneous interspecific hybridization, J. Hered., 78: 191–196.

    Google Scholar 

  • Schmidt, R.J., Burr, F.A., and Burr, B., 1987: Transposon tagging and molecular analysis of the maize regulatory locus opaque-2, Science, 238: 960–963.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, D., 1989, Pattern of Ac transposition in maize, Genetics, 121: 125–128.

    PubMed  CAS  Google Scholar 

  • Schwarz-Sommer, Z., Leclercq, L., Göbel, E., and Saedler, H., 1987, Cin4, an insert altering the structure of the Al gene in Zea mays, exhibits properties of nonviral transposons, The EMBO J., 6: 3878–3880.

    Google Scholar 

  • Sears E.R., 1954, The aneuploids of common wheat, Univ. Missouri Agr. Expt. Stat. Res. Bull., 572.

    Google Scholar 

  • Sethi, G.S., Finch, R.A., and Miller, T.E., 1986. A bread wheat (Triticum aestivum) x cultivated barley (Hordeum vulgare) hybrid with homoeologous pairing, Can. J. Genet. Cytol., 28: 777–782.

    Google Scholar 

  • Shillito, R.D., Carswell, G.K., Johnson, C.M., DiMaio, J.J., and Harms, C.T., 1989, Regeneration of fertile plants from protoplasts of elite inbred maize, Bio/Technology, 7: 581–587.

    Article  Google Scholar 

  • Sinunonds, N.W., 1979, Principles of crop improvement, Longman Group Limited, London, New York.

    Google Scholar 

  • Simpson, E., Snape, J.W., and Finch, R.A., 1980, Variation between Hordeum bulbosum genotypes in their ability to produce haploids in barley, Hordeum vulgare, Z. Pflanzenzüchtg., 85: 205–211.

    Google Scholar 

  • Sitch, L.A., and Snape, J.W., 1987, Factors affecting haploid production in wheat using the Hordeum bulbosum system. 1. Genotypic and environmental effects on pollen grain germination, pollen tube growth and the frequency of fertilization, Euphytica, 36: 483–496.

    Article  Google Scholar 

  • Sitch, L.A., Snape, J.W., and Firman, SJ., 1985, Intrachromosomal mapping of crossability genes in wheat (Triticum aestivum), Theor. Appl. Genet., 70: 309–314.

    Article  Google Scholar 

  • Snape, J.W., and Simpson, E., 1981, Uses of doubled haploid lines for genetical analysis in barley, in: “Barley Genetics IV”, Proc. 4th Int. Barley Genet. Symp., pp. 704–709.

    Google Scholar 

  • Snape, J.W., and Simpson, E., 1986, The utilisation of doubled haploid lines in quantitative genetics, Bull. Soc. bot. Fr. Actualités bot., 133: 59–66.

    Google Scholar 

  • Snape, J.W., Wright, A.J., and Simpson, E., 1984, Methods for estimating gene numbers for quantitative characters using doubled haploid lines, Theor. Appl. Genet., 67: 143–148.

    Article  Google Scholar 

  • Snape, J.W., Chapman, V., Moss, J., Blanchard, C.E., and Miller, T.E., 1979, The crossabilities of wheat varieties with Hordeum bulbosum, Heredity, 42: 291–298.

    Article  Google Scholar 

  • Subrahmanyam, N.C., 1982, Species dominance in chromosome elimination in barley hybrids, Curr. Sci., 51: 28–31.

    Google Scholar 

  • Subrahmanyam, N.C., and Kasha, K.J., 1973, Selective chromosomal elimination during haploid formation in barley following interspecific hybridization, Chromosoma, 42: 111–125.

    Article  Google Scholar 

  • Subrahmanyam, N.C., and von Bothmer, R., 1987, Interspecific hybridization with Hordeum bulbosum and development of hybrids and haploids, Hereditas, 106: 119–127.

    Article  Google Scholar 

  • Swanson, C.P., Merz, T., and Young, W.J., 1980, “Cytogenetics. The chromosome in division, inheritance and evolution”, ( 2nd edition ), Prentics Hall, Inc., London.

    Google Scholar 

  • Tanksley, S.D., Young, N.D., Paterson, A.H., and Bonierbale, M.W., 1989, RFLP mapping in plant breeding: New tools for an old science, Bio/ Technology, 7: 257–264.

    CAS  Google Scholar 

  • Van Sluys, M.A., Tempé, J., and Fedoroff, N., 1987, Studies on the introduction and mobility of the maize Activator element in Arabidopsis thaliana and Daucus carota, The EMBO J., 6: 3881–3889.

    Google Scholar 

  • Wilson, A.S., 1876, On wheat and rye hybrids, Trans. Proc. Bot. Soc. Edinburgh, 12: 826–828.

    Google Scholar 

  • Woolhouse, H.W., 1987, New plants and old problems, Ann. Bot., 60: Suppl., 4, 189–198.

    Google Scholar 

  • Yoder, J.I., Palys, J., Alpert, K., and Lassner, M., 1988, Ac transposition intransgenic tomato plants, Mol. Gen. Genet., 213: 291–296.

    CAS  Google Scholar 

  • Young, N.D., and Tanksley, S.D., 1989, RFLP analysis of the size of chromosomal segments retained around the Tm-2 locus of tomato during backcross breeding, Theor. Appl. Genet., 77: 353–359.

    Article  CAS  Google Scholar 

  • Zenkteler, M., and Nitzsche, W., 1984, Wide hybridization experiments in cereals, Theor. Appl. Genet., 68: 311–315.

    Article  Google Scholar 

  • Zohary, D., 1970, Centres of diversity and centres of origin, in: “Genetic resources in plants–their exploitation and conservation”, O.H.Frankel and E. Bennett, eds., Blackwell, Oxford, pp. 33–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Laurie, D.A., O’Donoughue, L.S., Bennett, M.D. (1990). Wheat X Maize and Other Wide Sexual Hybrids: Their Potential for Genetic Manipulation and Crop Improvement. In: Gustafson, J.P. (eds) Gene Manipulation in Plant Improvement II. Stadler Genetics Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7047-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7047-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7049-9

  • Online ISBN: 978-1-4684-7047-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics