Wheat X Maize and Other Wide Sexual Hybrids: Their Potential for Genetic Manipulation and Crop Improvement

  • David A. Laurie
  • Louise S. O’Donoughue
  • Michael D. Bennett
Part of the Stadler Genetics Symposia Series book series (SGSS)


“The view generally entertained by naturalists is that species, when intercrossed, have been specially endowed with the quality of sterility, in order to prevent the confusion of all organic forms.” With these words Charles Darwin opens his chapter on hybridism in The Origin of Species. Darwin, however, goes on to argue that the degree of sterility in crosses is not a specially endowed quality but is highly variable, arising through the processes of natural selection by the accumulation of what we would now call genetic differences.


Pollen Tube Hexaploid Wheat Pearl Millet Haploid Plant Embryo Rescue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdullah, R., Cocking, E.C., and Thompson, J.A., 1986, Efficient plant regeneration from rice protoplasts through somatic embryogenesis, Bio/Technology, 4: 1087–1090.CrossRefGoogle Scholar
  2. Anderson, M.K., and Reinbergs, E., 1985, Barley breeding, in: “Barley”, D.C. Rasmusson, ed., American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Publishers Madison, Wisconsin, pp. 231–268.Google Scholar
  3. Baker, B., Schell, J., Lörz, H., and Fedoroff, N., 1986, Transposition of the maize controlling element “Activator” in tobacco, Proc. Natl. Acad. Sci. USA, 83: 4844–4848.CrossRefGoogle Scholar
  4. Barclay, I.R., 1975, High frequencies of haploid production in wheat (Triticum aestivum) by chromosome elimination, Nature. 256: 410–411.CrossRefGoogle Scholar
  5. Bennett, M.D., and Smith, J.B., 1976, Nuclear DNA amounts in angiosperms, Philos. Trans. Roy. Soc. Lond. Ser. B, 274: 227–274.CrossRefGoogle Scholar
  6. Bennett, M.D., Smith, J.B., and Barclay, I.R., 1975, Early seed development in the Triticeae, Phil. Trans. R. Soc. Lond. Ser. B, 272: 199–227.CrossRefGoogle Scholar
  7. Bennetzen, J.L., Qin, M.M., Ingels, S., and Ellinghoe, A.H., 1988, Allele-specific and mutator-associated instability at the Rpl disease resistance locus of maize, Nature, 332: 369–370.CrossRefGoogle Scholar
  8. Bostock, C.J., 1986, Mechanisms of DNA sequence amplification and their evolutionary consequences, Phil Trans R Soc. Lond. Ser, B, 312: 261–273.CrossRefGoogle Scholar
  9. Botterman, J., and Leemans, J., 1988, Engineering herbicide resistance in plants, Trends in Genetics, 4: 219–222.PubMedCrossRefGoogle Scholar
  10. Brookfield, J.F.Y., 1986, The population biology of transposable elements, Phil. Trans. R. Soc. Lond. Ser. B, 312: 217–226.CrossRefGoogle Scholar
  11. Burr, B., Burr, F.A., Thompson, K.H., Albertson, M.C., and Stuber, C.W., 1988, Gene mapping with recombinant inbreds in maize, Genetics, 118: 519–526.PubMedGoogle Scholar
  12. Chao, S., Raines, C.A., Longstaff, M., Sharp, P.J., Gale, M.D., and Dyer, T.A., 1989, Copy number and chromosomal location in wheat and some of its close relatives of the genes for enzymes involved in photosynthetic CO, fixation, Mol. Gen. Genet., (in press).Google Scholar
  13. Chapman, V., Miller, T.E., and Riley, R., 1976, Equivalence of the A genome of bread wheat and that of Triticum urartu, Genet. Res. Camb., 27: 69–76.CrossRefGoogle Scholar
  14. Choo, T.M., Christie, B.R., and Reinbergs, E., 1979, Doubled haploids for estimating genetic variances and a scheme for population improvement in self-pollinating crops, Theor. Appl. Genet., 54: 267–271.CrossRefGoogle Scholar
  15. Colot, V., Robert, L.S., Kavanagh, T.A., Bevan, M.W., and Thompson, R.D., 1987, Localization of sequences in wheat endosperm protein genes which confer tissue-specific expression in tobacco, The EMBO J., 6: 3559–3564.Google Scholar
  16. Comeau, A., Plourde, A., St. Pierre, C.A., and Nadeau, P., 1988, Production of doubled haploid wheat lines by wheat x maize hybridization (Abstract), Genome, 30: Supplement 1, p 482.CrossRefGoogle Scholar
  17. Doebley, J., and Sisco, P.H., 1989, On the origin of the maize male sterile cytoplasms: its completely unimportant, that’s why its so interesting, Maize Genetics Cooperation News Letter, 63: 108–109.Google Scholar
  18. Dover, G.A., 1982, Molecular drive: a cohesive mode of species evolution, Nature, 299: 111–117.PubMedCrossRefGoogle Scholar
  19. Dover, G.A., and Tautz, D., 1986, Conservation and divergence in multigene families: alternatives to selection and drift, Phil. Trans. R. Soc. Lond. Ser. B, 312: 275–289.CrossRefGoogle Scholar
  20. Driscoll, C.J., 1981, Perspectives in chromosome manipulation, Phil. Trans. R. Soc. Lond. Ser. B, 292: 535–546.CrossRefGoogle Scholar
  21. Dvorak, J., 1976, The relationship between the genome of Triticum urartu and the A and B genomes of Triticum aestivum. Can. J. Genet. Cytol. 18: 371–377.Google Scholar
  22. Dvorak, J., 1983, The origin of wheat chromosomes 4A and 4B and their genome reallocation, Can. J. Genet. Cytol., 25: 210–214.Google Scholar
  23. Dvorak, J., 1988, Cytogenetical and molecular inferences about the evolution of wheat, in: “Proc. 7th Int. Wheat Genet. Symp., Vol. I”, T.E. Miller and R.M.D. Koebner, eds., Institute of Plant Science Research, Cambridge, U.K., pp. 47–51.Google Scholar
  24. Ellis, J.G., Lawrence, G.J., Peacock, W.J., and Pryor, A.J., 1988, Approaches to cloning plant genes conferring resistance to fungal pathogens, Annu. Rev. Phytopathol., 26: 245–263.CrossRefGoogle Scholar
  25. Endo, T.R., 1988a, Chromosome mutations induced by gametocidal chromosomes in common wheat, in: “Proc. 7th Int. Wheat Genet. Symp., Vol. I”, T.E. Miller and R.M.D. Koebner, eds., Institute of Plant Science Research, Cambridge, U.K., pp. 259–265.Google Scholar
  26. Endo, T.R., 1988b, Induction of chromosomal structural changes by a chromosome of Aegilops cylindrica L. in common wheat, J. Hered., 79: 366–370.Google Scholar
  27. Falk, D.E., and Kasha, K.J., 1981, Comparison of the crossability of rye (Secale cereale) and Hordeum bulbosum onto wheat (Triticum aestivum), Can. J. Genet. Cytol., 23: 81–88.Google Scholar
  28. Falk, D.E., and Kasha, K.J., 1983, Genetic studies of the crossability of hexaploid wheat with rye and Hordeum bulbosum, Theor. Appl. Genet., 64: 303–307.CrossRefGoogle Scholar
  29. Farrer, W., 1904, Some notes on the wheat “Bobs”, its peculiarities, economic value and origin, Agric. Gazette of N.S.W., 15: 849–854.Google Scholar
  30. Fedak, G., 1985a, Wide crosses in Hordeum, in: “Barley”, D.C. Rasmusson, ed., American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Publishers Madison, Wisconsin, pp. 155–186.Google Scholar
  31. Fedak, G., 1985b, Alien species as sources of physiological traits for wheat improvement, Euphytica, 34: 673–680.CrossRefGoogle Scholar
  32. Fedak, G., 1989, Wide hybridization for cereal improvement, in: “Current options for cereal development”, M. Malusznyski, ed., Kluwer Academic Publishers, Dortrecht, Boston, London, pp. 39–48.CrossRefGoogle Scholar
  33. Fedoroff, N., Furtek, D.B., and Nelson, O.E., 1984, Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element Activator (Ac), Proc. Natl. Acad. Sci. USA, 81: 3825–3829.PubMedCrossRefGoogle Scholar
  34. Finch, R.A., Miller, T.E., and Bennett, M.D., 1984, “Cuckoo” Aegilops addition chromosome in wheat ensures its transmission by causing chromosome breaks in meiospores lacking it, Chromosoma, 90: 84–88.CrossRefGoogle Scholar
  35. Flavell, R.B., 1986, Repetitive DNA and chromosome evolution in plants, Phil. Trans. R. Soc. Lond. Ser. B, 312: 227–242.CrossRefGoogle Scholar
  36. Flavell, R.B., Bennett, M.D., Seal, A.G., and Hutchinson, J., 1987, Chromosome structure and organization, in: “Wheat breeding: its scientific basis”, F.G.H. Lupton, ed., Chapman and Hall, London, New York, pp. 211–268.Google Scholar
  37. Flavell, R.B., Harris, N., O’Dell, M., Sardana, R.K., and Jackson, S., 1988, Transposable elements and the control of ribosomal RNA gene expression in wheat, in: “Proc. 7th Int. Wheat Genet. Symp., Vol. I”, T.E. Miller and R.M.D. Koebner, eds., Institute of Plant Science Research, Cambridge, U.K., pp. 33–37.Google Scholar
  38. Furuta, Y., Nishikawa, K., and Makino, T., 1975, Intraspecific variation of nuclear DNA content in Aegilops squarrosa, Jap. J. Genet., 50: 257–263.CrossRefGoogle Scholar
  39. Furuta, Y., Nishikawa, K., Makino, T., and Sawai, Y., 1984, Variation in DNA content of 21 individual chromosomes among six subspecies in common wheat, Jpn. J. Genet., 59: 83–90.CrossRefGoogle Scholar
  40. Gale, M.D., and Miller, T.E., 1987, The introduction of alien genetic variation in wheat, in: “Wheat Breeding: Its scientific basis”, F.G.H. Lupton, ed., Chapman and Hall, London, New York, pp. 173–210.Google Scholar
  41. Gerstel, D.U., and Burns, J.A., 1966, Chromosomes of unusual length in hybrids between two species of Nicotiana, Chromosomes Today, 1: 41–56.Google Scholar
  42. Gerstel, D.U., and Burns, J.A., 1976, Enlarged euchromatic chromosomes (“megachromosomes”) in hybrids between Nicotiana tabacum and N. plumbaginifolia, Genetica, 46: 139–153.CrossRefGoogle Scholar
  43. Gill, B.S., and Appels, R., 1988, Relationships between Nor-loci from different Triticea species, Plant Syst. Evol., 160: 77–89.CrossRefGoogle Scholar
  44. Goodman, R.M., Hauptli, H., Crossway, A., and Knauf, V.C., 1987, Gene transfer in crop improvement, Science, 236: 48–54.PubMedCrossRefGoogle Scholar
  45. Greenblatt, I.R., 1984, A chromosome replication pattern deduced from pericarp phenotypes resulting from movements of the transposable element, Modulator, in maize, Genetics, 108: 471–485.Google Scholar
  46. Gregory, R.S., 1987, Triticale breeding, in: “Wheat breeding: its scientific basis”, F.G.H. Lupton, ed., Chapman and Hall, London, New York, pp. 269–286.Google Scholar
  47. Hake, S., Vollbrecht, E., and Freeling, M., 1989, Cloning Knotted, the dominant morphological mutant in maize using Ds2 as a transposon tag, The EMBO J., 8: 15–22.Google Scholar
  48. Harberd, N.P., Flavell, R.B., and Thompson, R.D., 1987, Identification of a transposon-like insertion in a Glu-1 allele of wheat, Mol. Gen. Genet., 209: 326–332.PubMedCrossRefGoogle Scholar
  49. Harlan, J.R., De Wet, J.M.J., and Price, E.G., 1973, Comparative evolution of cereals, Evolution, 27: 311–325.CrossRefGoogle Scholar
  50. Hawkes, J.G., 1983, “The diversity of crop plants”, President and Fellows of Harvard College, U.S.A., Cambridge (Massachusetts), London.Google Scholar
  51. Ho, K.M., and Jones, G.E., 1980, Mingo barley, Can. J. Plant Sci., 60: 279–280.CrossRefGoogle Scholar
  52. Hutchinson, J., 1959, “The families of flowering plants. Vol. II. Monocotyledons”, Clarendon Press, Oxford.Google Scholar
  53. Islam, A.K.M., Shepherd, K.W., and Sparrow, D.H.B., 1978, Production and characterization of wheat-barley addition lines, in: “Proc. 5th Int. Wheat Genet. Symp.”, New Delhi, pp. 365–371.Google Scholar
  54. Islam, A.K.M.R., Shepherd, K.W., and Sparrow, D.H.B., 1981, Isolation and characterization of euplasmic wheat-barley chromosome addition lines, Heredity, 46: 161–174.CrossRefGoogle Scholar
  55. James, J., 1978, New maize x Tripsacum hybrids for maize improvement, Euphytica, 28: 239–247.CrossRefGoogle Scholar
  56. James, J., 1979, New types of maize x Tripsacum and maize x sorghum hybrids - their use in maize improvement, in: “Proc. 10th meeting of the maize and sorghum section of EUCARPIA”, Varna, pp. 120–125.Google Scholar
  57. Johns, M.A., Mottinger, J., and Freeling, M., 1985, A low copy number, copia-like transposon in maize, The EMBO J., 4: 1093–1102.Google Scholar
  58. Kasha, K.J., 1974, Haploids from somatic cells, in: “Haploids in higher plants, Proc. 1st Int. Symp., Guelph, K.J., Kasha, ed., University of Guelph, Ontario, pp. 67–87.Google Scholar
  59. Kimber, G., 1988, Evolutionary patterns in the wheat group, in: “Proc. 7th Int. Wheat Genet. Symp., Vol. I”, T.E. Miller and R.M.D. Koebner, eds., Institute of Plant Science Research, Cambridge, U.K., pp. 47–51.Google Scholar
  60. Knapp, S., Coupland, G., Uhrig, H., Starlinger, P., and Salamini, F., 1988, Transposition of the maize transposable element Ac in Solanum tuberosum, Mol. Gen. Genet., 213: 285–290.CrossRefGoogle Scholar
  61. Kruse, A., 1973, Hordeum x Triticum hybrids, Hereditas, 73: 157–161.Google Scholar
  62. Kruse, A., 1976, Reciprocal hybrids between the genera Hordeum, Secale and Triticum, Hereditas, 84: 244.Google Scholar
  63. Lambowitz, A.M., 1989, Infectious introns, Cell, 56: 323–326.PubMedCrossRefGoogle Scholar
  64. Lander, E.S., and Botstein, D., 1989, Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps, Genetics, 121: 185–199.PubMedGoogle Scholar
  65. Lange, W., and Balkema-Boomstra, A.G., 1988, The use of wild species in breeding barley and wheat, with special reference to the progenitors of the cultivated species, in: “Cereal breeding related to integrated cereal production”, M.L. Jorna and L.A.J. Slootmaker, eds., Pudoc, Wageningen, pp. 157–178.Google Scholar
  66. Lange, W., and Riley, R., 1973, The position on chromosome 5B of wheat of the locus determining crossability with rye, Genet. Res. Camb., 22: 143–153.CrossRefGoogle Scholar
  67. Laurie, D.A., 1989a, Factors affecting the frequency of fertilization in Triticum aestivum cv. Highbury x Zea mays cv. Seneca 60 crosses, Plant Breeding, 103: 133–140.CrossRefGoogle Scholar
  68. Laurie, D.A., 1989b, The frequency of fertilization in wheat x pearl millet crosses, Genome, (in press).Google Scholar
  69. Laurie, D.A., and Bennett, M.D., 1985, Nuclear DNA content in the genera Zea and Sorghum. Intergeneric, interspecific and intraspecific variation, Heredity, 55: 307–313.CrossRefGoogle Scholar
  70. Laurie, D.A., and Bennett, M.D., 1986, Wheat x maize hybridization, Can. J. Genet. Cytol., 28: 313–316.Google Scholar
  71. Laurie, D.A., and Bennett, M.D., 1987, The effect of the crossability loci Kr1 and Kr2 on fertilization frequency in hexaploid wheat x maize crosses, Theor. Appl. Genet., 73: 403–409.CrossRefGoogle Scholar
  72. Laurie, D.A., and Bennett, M.D., 1988a, Chromosome behaviour in wheat x maize, wheat x sorghum and barley x maize crosses, in: “Kew Chromosome Conference III”, P.E. Brandham, ed., Her Majesty’s Stationary Office, London, pp. 167–177.Google Scholar
  73. Laurie, D.A., and Bennett, M.D., 1988b, Cytological evidence for fertilization in hexaploid wheat x sorghum crosses, Plant Breeding, 100: 73–82.CrossRefGoogle Scholar
  74. Laurie, D.A., and Bennett, M.D., 1988c, The production of haploid wheat plants from wheat x maize crosses, Theor. Appl. Genet., 76: 393–397.CrossRefGoogle Scholar
  75. Laurie, D.A., and Bennett, M.D., 1989, The timing of chromosome elimination in hexaploid wheat x maize crosses, Genome, 32: 953–961.CrossRefGoogle Scholar
  76. Masson, P., and Fedoroff, N.V., 1989, Mobility of the maize Suppressormutator element in transgenic tobacco cells, Proc. Natl. Acad. Sci. USA, 86: 2219–2223.PubMedCrossRefGoogle Scholar
  77. Miller, T.E., 1983, Preferential transmission of alien chromosomes in wheat, in: “Kew Chromosome Conference II”, P.E. Brandham and M.D. Bennett, eds., George Allen and Unwin, London, pp. 173–182.Google Scholar
  78. Miller, T.E., and Chapman, V., 1976, Aneuhaploids in bread wheat, Genet. Res. Camb., 28: 37–45.CrossRefGoogle Scholar
  79. Miller, T.E., Reader, S.M., and Gale, M.D., 1983, The effect of homoeologous group 3 chromosomes on chromosome pairing and crossability in Triticum aestivum, Can. J. Genet. Cytol., 25: 634–641.Google Scholar
  80. Miller, T.E., Shepherd, K.W., and Riley, R., 1981, The relationship of chromosome 4A of diploid wheat to that of hexaploid wheat: a clarification of an earlier study, Cer. Res. Commun., 9: 327–329.Google Scholar
  81. Mitchell, L.E., Dennis, E.S., and Peacock, W.J., 1989, Molecular analysis of an alcohol dehydrogenase (Adh) gene from chromosome 1 of wheat, Genome, 32: 349–358.PubMedCrossRefGoogle Scholar
  82. Moav, J., Moav, R., and Zohary, D., 1968, Spontaneous morphological alterations in Nicotiana hybrids, Genetics, 59: 57–63.PubMedGoogle Scholar
  83. Motto, M., Maddaloni, M., Ponziani, G., Brembilla, M., Marotta, R., Di Fonzo, N., Soave, C., Thompson, R., and Salamini, F., 1988, Molecular cloning of the o2-m5 allele of Zea mays using transposon tagging, Mol. Gen. Genet., 212: 488–494.CrossRefGoogle Scholar
  84. Mujeeb-Kazi, A., and Kimber, G., 1985, The production, cytology and practicality of wide hybrids in the Triticeae, Cereal Res. Commun., 13: 111–124.Google Scholar
  85. Müntzing, A., 1936, Über die Entstehungsweise 56-Chromosomiger Weizen-Roggen Bastarde, Der Zuchter, 8: 188–191.Google Scholar
  86. O’Donoughue, L.S., and Bennett, M.D., 1988, Wide hybridization between relatives of bread wheat and maize, in: “Proc. 7th Int. Wheat Genet. Symp., Vol. I”, T.E. Miller and R.M.D. Koebner, eds., Institute of Plant Science Research, Cambridge, U.K., pp. 397–402.Google Scholar
  87. Paterson, A.H., Lander, E.S., Hewitt, J.D., Peterson, S., Lincoln, S., and Tanksley, S., 1988, Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms, Nature, 335: 721–726.PubMedCrossRefGoogle Scholar
  88. Pereira, A., and Saedler, H., 1989, Transpositional behavior of the maize En/Spm element in transgenic tobacco, The EMBO J., 8: 1315–1321.Google Scholar
  89. Pickering, R.A., 1983, The influence of genotype on doubled haploid barley production, Euphytica, 32: 863–876.CrossRefGoogle Scholar
  90. Price, H.J., Chambers, K.L., Bachmann, K., and Riggs, J., 1983, Inheritance of nuclear 2C DNA content variation in intraspecific and interspecific hybrids of Microseris (Asteraceae), Am. J. Bot., 70: 1133–1138.CrossRefGoogle Scholar
  91. Prioli, L.M., and Söndahl, M.R., 1989, Plant regeneration and recovery of fertile plants from protoplasts of maize (Zea mays L.), Bio/Technology, 7: 589–594.CrossRefGoogle Scholar
  92. Riley, R., and Chapman, V., 1967, The inheritance in wheat of crossability with rye, Genet. Res. Camb., 9: 259–267.CrossRefGoogle Scholar
  93. Rimpau, W., 1891, Kreuzungsprodukte landwirtschaftlicher Kulturplanzen, Landwirtschaftl. Jahrb., 20: 335–371.Google Scholar
  94. Robertson, D.S., 1978, Characterization of a mutator system in maize, Mut. Res., 51: 21–28.Google Scholar
  95. Robertson, D.S., 1981, Tests of two models for the transmission of the Mu mutator in maize, Mol. Gen. Genet., 183: 51–53.CrossRefGoogle Scholar
  96. Sapre, A.B., and Deshpande, D.S., 1987, Origin of B chromosomes in Coix L. through spontaneous interspecific hybridization, J. Hered., 78: 191–196.Google Scholar
  97. Schmidt, R.J., Burr, F.A., and Burr, B., 1987: Transposon tagging and molecular analysis of the maize regulatory locus opaque-2, Science, 238: 960–963.PubMedCrossRefGoogle Scholar
  98. Schwartz, D., 1989, Pattern of Ac transposition in maize, Genetics, 121: 125–128.PubMedGoogle Scholar
  99. Schwarz-Sommer, Z., Leclercq, L., Göbel, E., and Saedler, H., 1987, Cin4, an insert altering the structure of the Al gene in Zea mays, exhibits properties of nonviral transposons, The EMBO J., 6: 3878–3880.Google Scholar
  100. Sears E.R., 1954, The aneuploids of common wheat, Univ. Missouri Agr. Expt. Stat. Res. Bull., 572.Google Scholar
  101. Sethi, G.S., Finch, R.A., and Miller, T.E., 1986. A bread wheat (Triticum aestivum) x cultivated barley (Hordeum vulgare) hybrid with homoeologous pairing, Can. J. Genet. Cytol., 28: 777–782.Google Scholar
  102. Shillito, R.D., Carswell, G.K., Johnson, C.M., DiMaio, J.J., and Harms, C.T., 1989, Regeneration of fertile plants from protoplasts of elite inbred maize, Bio/Technology, 7: 581–587.CrossRefGoogle Scholar
  103. Sinunonds, N.W., 1979, Principles of crop improvement, Longman Group Limited, London, New York.Google Scholar
  104. Simpson, E., Snape, J.W., and Finch, R.A., 1980, Variation between Hordeum bulbosum genotypes in their ability to produce haploids in barley, Hordeum vulgare, Z. Pflanzenzüchtg., 85: 205–211.Google Scholar
  105. Sitch, L.A., and Snape, J.W., 1987, Factors affecting haploid production in wheat using the Hordeum bulbosum system. 1. Genotypic and environmental effects on pollen grain germination, pollen tube growth and the frequency of fertilization, Euphytica, 36: 483–496.CrossRefGoogle Scholar
  106. Sitch, L.A., Snape, J.W., and Firman, SJ., 1985, Intrachromosomal mapping of crossability genes in wheat (Triticum aestivum), Theor. Appl. Genet., 70: 309–314.CrossRefGoogle Scholar
  107. Snape, J.W., and Simpson, E., 1981, Uses of doubled haploid lines for genetical analysis in barley, in: “Barley Genetics IV”, Proc. 4th Int. Barley Genet. Symp., pp. 704–709.Google Scholar
  108. Snape, J.W., and Simpson, E., 1986, The utilisation of doubled haploid lines in quantitative genetics, Bull. Soc. bot. Fr. Actualités bot., 133: 59–66.Google Scholar
  109. Snape, J.W., Wright, A.J., and Simpson, E., 1984, Methods for estimating gene numbers for quantitative characters using doubled haploid lines, Theor. Appl. Genet., 67: 143–148.CrossRefGoogle Scholar
  110. Snape, J.W., Chapman, V., Moss, J., Blanchard, C.E., and Miller, T.E., 1979, The crossabilities of wheat varieties with Hordeum bulbosum, Heredity, 42: 291–298.CrossRefGoogle Scholar
  111. Subrahmanyam, N.C., 1982, Species dominance in chromosome elimination in barley hybrids, Curr. Sci., 51: 28–31.Google Scholar
  112. Subrahmanyam, N.C., and Kasha, K.J., 1973, Selective chromosomal elimination during haploid formation in barley following interspecific hybridization, Chromosoma, 42: 111–125.CrossRefGoogle Scholar
  113. Subrahmanyam, N.C., and von Bothmer, R., 1987, Interspecific hybridization with Hordeum bulbosum and development of hybrids and haploids, Hereditas, 106: 119–127.CrossRefGoogle Scholar
  114. Swanson, C.P., Merz, T., and Young, W.J., 1980, “Cytogenetics. The chromosome in division, inheritance and evolution”, ( 2nd edition ), Prentics Hall, Inc., London.Google Scholar
  115. Tanksley, S.D., Young, N.D., Paterson, A.H., and Bonierbale, M.W., 1989, RFLP mapping in plant breeding: New tools for an old science, Bio/ Technology, 7: 257–264.Google Scholar
  116. Van Sluys, M.A., Tempé, J., and Fedoroff, N., 1987, Studies on the introduction and mobility of the maize Activator element in Arabidopsis thaliana and Daucus carota, The EMBO J., 6: 3881–3889.Google Scholar
  117. Wilson, A.S., 1876, On wheat and rye hybrids, Trans. Proc. Bot. Soc. Edinburgh, 12: 826–828.Google Scholar
  118. Woolhouse, H.W., 1987, New plants and old problems, Ann. Bot., 60: Suppl., 4, 189–198.Google Scholar
  119. Yoder, J.I., Palys, J., Alpert, K., and Lassner, M., 1988, Ac transposition intransgenic tomato plants, Mol. Gen. Genet., 213: 291–296.Google Scholar
  120. Young, N.D., and Tanksley, S.D., 1989, RFLP analysis of the size of chromosomal segments retained around the Tm-2 locus of tomato during backcross breeding, Theor. Appl. Genet., 77: 353–359.CrossRefGoogle Scholar
  121. Zenkteler, M., and Nitzsche, W., 1984, Wide hybridization experiments in cereals, Theor. Appl. Genet., 68: 311–315.CrossRefGoogle Scholar
  122. Zohary, D., 1970, Centres of diversity and centres of origin, in: “Genetic resources in plants–their exploitation and conservation”, O.H.Frankel and E. Bennett, eds., Blackwell, Oxford, pp. 33–42.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • David A. Laurie
    • 1
  • Louise S. O’Donoughue
    • 1
  • Michael D. Bennett
    • 2
  1. 1.Institute of Plant Science ResearchTrumpington, CambridgeUK
  2. 2.Jodrell LaboratoryRoyal Botanic GardensKew, Richmond, SurreyUK

Personalised recommendations