Using Plant Virus and Related RNA Sequences to Control Gene Expression

  • Mark Young
  • Wayne Gerlach
Part of the Stadler Genetics Symposia Series book series (SGSS)


Plant virus replication relies on the biochemistry of its host cell, strongly suggesting that viral gene expression closely mimics the host’s own mechanism of gene expression. This fundamental principle has been a driving force behind research directed at understanding the molecular biology of viruses, using them as a tool for studying both viral and host gene expression. Many recent advances have been made possible by recombinant DNA technology, which has allowed a more thorough analysis of basic viral genome structure and function. Armed with this basic knowledge, virologists have been successful in manipulating and using viral genomes and related sequences to alter gene expression and thereby altering phenotypes. Bacterial, animal, and plant viruses have all been subjected to this approach.


Tobacco Mosaic Virus Cucumber Mosaic Virus Plant Virus Control Gene Expression Chloramphenicol Acetyl Transferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abel, P. P., Nelson, R. S., De, B., Hoffmann, N., Rogers, S. G., Fraley, R. T., and Beachy, R. N., 1986, Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene, Science, 232: 738–743.PubMedCrossRefGoogle Scholar
  2. Anzola, J. V., Xu, Z., Asamizu, T., and Nuff, D. L., 1987, Segment-specific inverted repeats found adjacent to conserved terminal sequences in wound tumor virus genome and defective interfering RNAs, Proc. Natl. Acad. Sci. USA, 84: 8301–8305.PubMedCrossRefGoogle Scholar
  3. Bass, B. L., and Weintraub, H., 1987, A developmentally regulated activity that unwinds RNA duplexes, Cell, 48: 607–613.PubMedCrossRefGoogle Scholar
  4. Bass, B. L., and Weintraub, H., 1988, An unwinding activity that covalently modifies its double stranded RNA substrate, Cell, 55: 1089–1098.PubMedCrossRefGoogle Scholar
  5. Bujarski, J. J., Ahlquist, P., Hall, T. C., Dreher, T. W., and Kaesberg, P., 1986, Modulation of replication, aminoacylation and adenylation in vitro and infectivity in vivo of BMV RNAs containing deletions within the multifunctional 3’ end, EMBO J., 5: 1769–1774.PubMedGoogle Scholar
  6. Bujarski, J. J., Dreher, T. W., and Hall, T. C., 1985, Deletions in the 3’-terminal tRNA-like structure of brome mosaic virus RNA differentially affect aminoacylation and replication in vitro, Proc. Natl. Acad. Sci. USA, 82: 5636–5640.PubMedCrossRefGoogle Scholar
  7. Buzayan, J. M., Gerlach, W. L., and Bruening, G., 1986, Non-enzymatic cleavage and ligation of RNAs complementary to a plant virus satellite RNA, Nature (Lond.), 323: 349–353.CrossRefGoogle Scholar
  8. Buzayan, J. M., Gerlach, W. L., Bruening, G., Keese, P., and Gould, A. R., 1986, Nucleotide sequence of satellite of tobacco ringspot virus RNA and its relationship to multimeric forms, Virology, 151: 186–199.PubMedCrossRefGoogle Scholar
  9. Crowley, T. E., Nellen, W., Gomer, R. H., and Firtel, R., 1985, Phenocopy of discoidin I-minus mutants by antisense transformation in Dictyoselium, Cell, 43: 633–641.PubMedCrossRefGoogle Scholar
  10. Fang, R., Nagy, F., Sivasubramaniam, S., and Chua, N., 1989, Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants, Plant Cell, 1: 141–150.PubMedCrossRefGoogle Scholar
  11. Forster, A. C., and Symons, R. H., 1987, Self cleavage of plus and minus RNAs of a virusoid and a structural model for t-e active sites, Cell, 49: 211–220.PubMedCrossRefGoogle Scholar
  12. Francki, R. I. B., 1985, Plant virus satell tes, Ann. Rev. Microbiol., 39: 151–174.CrossRefGoogle Scholar
  13. French, R., Janda, M., and Ahlquist, P., 1986, Bacterial genes inserted in an engineered RNA virus: efficient expression in monocotyledonous plant cells, Science, 231: 1294–1297.PubMedCrossRefGoogle Scholar
  14. Gallie, D. R., Sleat, D. E., Watts, J. W., Turner, P. C., and Wilson, M. A., 1987, The 5’-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo, Nucl. Acids Res., 15: 3257–3273.PubMedCrossRefGoogle Scholar
  15. Gerlach, W. L., Llewellyn, D., and Haseloff, J., 1987, Construction of a plant disease resistance gene from the satellite RNA of tobacco ringspot virus, Nature (Lond.), 328: 802–805.CrossRefGoogle Scholar
  16. Gerlach, W. L., Miller, W. A., and Waterhouse, P. M., 1987, Molecular genetics of barley yellow drawf virus, Barley Yellow Dwarf Newsletter, 1: 17–19.Google Scholar
  17. Harland, R., and Weintraub, H., 1985, Translation of mRNA infected into Xenopus oocytes is specifically inhibited by antisense RNA, J. Cell Biol., 101: 1094–1099.PubMedCrossRefGoogle Scholar
  18. Harrision, B. D., Mayo, M. A., and Baulcome, D. C., 1987, Virus resistance in transgenic plants that express cucumber mosaic virus satellite RNA, Nature (Lond.), 328: 799–802.CrossRefGoogle Scholar
  19. Harrision, B. D., Mayo, M. A., and Baulcome, D. C., 1987, Virus resistance in transgenic plants that express cucumber mosaic virus satellite RNA, Nature (Lond.), 328: 799–802.CrossRefGoogle Scholar
  20. Haseloff, J., and Gerlach, W. L., 1988, Simple RNA enzymes with new and highly specific endoribonuclease activities, Nature (Lond.), 334: 585–591.CrossRefGoogle Scholar
  21. Haseltine, W. A., and Wong-Staal, F., 1988, The molecular biology of the AIDS virus, Scientific American, 34–42.Google Scholar
  22. Hillman, B. L., Carrington, J. C., and Morris, T. J., 1987, A defective interfering RNA that contains a mosaic of a plant virus genome, Cell, 51: 427–433.PubMedCrossRefGoogle Scholar
  23. Inokuchi, Y., and Hirashima, A., 1987, Interference with viral infection by defective RNA replicase, J. Virol., 61: 3946–3949.PubMedGoogle Scholar
  24. Inouye, M., 1988, Antisense RNA: its functions and applications in gene regulation–a review, Gene, 72: 25–34.PubMedCrossRefGoogle Scholar
  25. Ismail, I. D., and Milner, J. J., 1988, Isolation of defective interfering particles of sonchus yellow net virus from cronically infected plants. J. Gen. Virol., 69: 999–1006.CrossRefGoogle Scholar
  26. Kiefer, M. C., Daubert, S. D., Schneider, I. R., and Bruening, G., 1982, Multimeric forms of satellite of tobacco ringspot virus RNA, Virology, 121: 262–273.PubMedCrossRefGoogle Scholar
  27. Kim, S. K., and Wold, B. J., 1985, Stable reduction of thymidine kinase activity in cells expressing high levels of anti-sense RNA, Cell, 42: 129–138.PubMedCrossRefGoogle Scholar
  28. Kuhlemeier, C., Green, P., and Chua, N.-H., 1987, Regulation of gene expression in higher plants, Annu. Rev. Plant Physiol., 38: 221–257.CrossRefGoogle Scholar
  29. Lingelbach, K., and Dobberstein, B., 1988, An extended RNA/RNA duplex structure within the coding region of mRNA does not block translational elongation, Nucl. Acids Res., 16: 3405–3414.PubMedCrossRefGoogle Scholar
  30. Marsh, L. E., Dreher, T. W., and Hall, T. C., 1988, Mutational analysis of the core and modulator sequences of the BMV RNA 3 subgenomic promoter, Nucl. Acids Res., 16: 981–995.PubMedCrossRefGoogle Scholar
  31. Melton, D. A., 1985, Injected antisense RNAs specifically block messenger RNA translation in vivo, Proc. Natl. Acad. Sci. USA, 82: 144–148.PubMedCrossRefGoogle Scholar
  32. Miller, W. A., Dreher, T. W., and Hall, T. C., 1985, Synthesis of brome mosaic virus subgenomic RNA in vitro by internal initiation on (-)-sense genomic RNA, Nature (Lond.), 313: 68.CrossRefGoogle Scholar
  33. Odell, J. T., Knowlton, S., Lin, W., and Mauvais, C. J., 1988, Properties of an isolated transcription stimulating sequence derived from the cauliflower mosaic virus 35S promoter, Plant Mol. Biol., 10: 263–273.CrossRefGoogle Scholar
  34. Odell, J. T., Nagy, F., and Chua, N.-H., 1985, Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter, Nature (Lond.), 313: 810–812.CrossRefGoogle Scholar
  35. Prody, G. A., Bakos, J. T., Buzayan, J. M., Schneider, I. R., and Bruening, G., 1986, Autolytic processing of dimeric plant virus satellite RNA, Science, 231: 1577–1580.PubMedCrossRefGoogle Scholar
  36. Rebagliati, M. R., and Melton, D. A., 1987, Antisense DNA injections in fertilized frog eggs revals an RNA duplex unwinding activity, Cell, 48: 607–613.CrossRefGoogle Scholar
  37. Schneider, I. R., 1977, Defective plant viruses, in: “Bletsville Symposia on Agricultural Research-Virology in Agriculture”, J. R. Romberger, ed., Allenheld Osmun, New Jersey (1977), pp. 201–219.Google Scholar
  38. Strauss, J. H., and Strauss, E. J., 1988, Evolution of RNA Viruses, Ann. Rev. Microbiol., 42: 657–683.CrossRefGoogle Scholar
  39. Strickland, S., Huarte, J., Belin, D., Vassalli, A., Rickles, J. R., and Vassalli, J., 1988, Antisense RNA directed against the 3’ noncoding region prevents dormant mRNA activation in mouse Oocytes, Science, 241: 680–684.PubMedCrossRefGoogle Scholar
  40. Turner, N. E., O’Connell, K. M., Nelson, R. S., Sanders, P. R., Beachy, R. N., Fraley, R. T., and Shah, D. M., 1987, Expression of alfalfa mosaic virus coat protein gene confers crossprotection in transgenic tobacco and tomato plants, EMBO J., 6: 1181–1187.Google Scholar
  41. van der Krol, A. R., Mol, J. M. N., and Stuije, A. R., 1988, Antisense genes in plants: an overview, Gene, 72: 45–50PubMedCrossRefGoogle Scholar
  42. van Dun, C. M., Bol, J. F., and Van Volten-Doting, L., 1987, Expression of alfalfa mosaic virus and tobacco rattle virus coat protein genes in transgenic tobacco plants, Virology, 159: 299–305.PubMedCrossRefGoogle Scholar
  43. Wagner, R. W., and Nishikura, K., 1988, Cell cycle expression of RNA duplex unwindase activity in mammalian cells, Mol. Cell. Biol., 8: 770–777.PubMedGoogle Scholar
  44. Weintraub, H., Izant, J. G., and Harland, R. M., 1985, Antisense RNA as a molecular tool for genetic analysis, Trends Genet., 1: 23–25.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Mark Young
    • 1
  • Wayne Gerlach
    • 1
  1. 1.Division of Plant IndustryCSIROCanberraAustralia

Personalised recommendations