Transformation and Regeneration of Important Crop Plants: Rice as the Model System for Monocots

  • Ray Wu
  • Elizabeth Kemmerer
  • David McElroy
Part of the Stadler Genetics Symposia Series book series (SGSS)


The use of transgenic plants as experimental tools in gene analysis and for the alteration of agronomic characters is fundamental to our attempts to improve crops. There are at least five ways to introduce foreign genes into plants. Here we would like to describe the merits and shortcomings of each method and present our results in producing transgenic rice plants. In addition, we propose a method using transgenic plants to facilitate cloning of genes which are difficult to identify by other methods.


Transgenic Plant Foreign Gene Transgenic Rice Plant Restriction Fragment Length Polymorphism Analysis Recognition Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abel, P. P., Nelson, R. S., De, B., Hoffmann, N., Rogers, S. G., Fraley, R. T., and Beachy, R. N., 1986, Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene, Science, 232: 738–743.PubMedCrossRefGoogle Scholar
  2. Abdullah, R., Cocking, E. C., and Thompson, J. A., 1986, Efficient plant regeneration from rice protoplasts through somatic embryogenesis, Bio/Technology, 4: 1087–1097.CrossRefGoogle Scholar
  3. Bennett, M. D., and Smith, J. B., 1976, Nuclear DNA amounts in angiosperms, Philos. Trans. Royal Soc. (London), 274: 227–274.CrossRefGoogle Scholar
  4. Botstein, D., White, R. L., Skolnick, M., and Davis, R. W., 1980, Construction of a genetic linkage map in man using restriction fragment length polymorphisms, Am. J. Human Genet., 32: 314–331.Google Scholar
  5. Botterman, J., and Leemans, J., 1988, Engineering herbicide resistance in plants, Trends in Genen., 4: 219–222.CrossRefGoogle Scholar
  6. Carle, G. F., and Olson, M. V., 1987, Orthogonal-field-alteration gel electrophoresis, Methods in Enzymol., 155: 468–482.CrossRefGoogle Scholar
  7. Clarke, L., and Carbon I., 1979, Selection of specific clones from colony banks by suppression or complementation tests, Methods in Enzymol., 68: 346–408.Google Scholar
  8. Cocking, E. C., and Davey, M. R., 1987, Gene transfer in cereals, Science, 236: 1259–1262.PubMedCrossRefGoogle Scholar
  9. de la Pena, A., Lorz, H., and Schell, J., 1987, Transgenic rye plants obtained by injecting DNA into young floral tillers, Nature, 325: 274–276.CrossRefGoogle Scholar
  10. DeLella, A. G., and Woo, S. L. C., 1987, Cloning large segments of genomic DNA using cosmid vectors, Methods in Enzymol., 152: 199–212.CrossRefGoogle Scholar
  11. Duan, X., and Chen, S., 1985, Variation of the characters in rice (Oryza sativa) induced by foreign DNA uptake, China Agricul. Sci., 3: 6–9.Google Scholar
  12. Fedoroff, N., Furtek, D., and Nelson, O., 1984, Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element, Ac, Proc. Natl. Acad. Sci. U. S. A., 81: 3825.PubMedCrossRefGoogle Scholar
  13. Fraley, R. T., Rogers, S. G., and Horsch, R. B., 1986, Genetics transformation in higher plants, CRC Crit. Rev. Plant Sci., 4: 1–46.CrossRefGoogle Scholar
  14. Fromm, M. E., Taylor, L. P., and Walbot, V., 1986, Stable transformation of maize after gene transfer by electroporation, Nature, 319: 791–793.PubMedCrossRefGoogle Scholar
  15. Gebeyechu, G., Rao, P. Y., Soo Chan, P., Simms, D. A., and Klevan, L., 1987, Novel biotinylated nucleotide-analogs for labeling and colorimetric detection of DNA, Nucleic Acids Res. 15: 4513–4534.CrossRefGoogle Scholar
  16. Goodman, R. M., Hauptli, H., Crossway, A., and Knauf, V. C., 1987, Gene transfer in crop improvement, Science, 236: 48–54.PubMedCrossRefGoogle Scholar
  17. Gheysen, G., Dhaese, P., van Montagu, M., and Schell, J., 1985, Advances in plant gene research, in: “Genetic Flux in Plants,” B. Hohn, and E. S. Dennis, eds., Springer, New York (1985), Vol. 2, pp. 11–47.CrossRefGoogle Scholar
  18. Haughn, G. W., Smith, J., Mazur, B., and Somerville, C., 1988, Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides, Mol. Gen. Genet., 211: 266–271.CrossRefGoogle Scholar
  19. Hilder, V. A., Gatehouse, A. M. R., Sheerman, S. E., Barker, R. F., and Boulter, D., 1987, A novel mechanism of insect resistance engineered in tobacco, Nature, 330: 160–163.CrossRefGoogle Scholar
  20. Klein, T. M., Wolf, E. D., Wu, R., and Sanford, J. C., 1987, High-velocity microprojectiles for delivering nucleic acids into living cells, Nature, 327: 70–73.CrossRefGoogle Scholar
  21. Klein, T. M., Gradziel, T., Fromm, M. E., and Sanford, J. C., 1988, Factors influencing gene delivery into Zea mays by high-velocity microprojectiles, Bio/Technology, 6: 559–563.CrossRefGoogle Scholar
  22. Lillis, M., and Freeling, M., 1986, Mu transposons in maize, TIG, July: 183–187.Google Scholar
  23. Luo, Z. X., and Wu, R., 1988, A simple method for the transformation of rice via the pollen-tube pathway, Plant Molec. Biol. Reporter, 6: 165–174.CrossRefGoogle Scholar
  24. McCouch, S. R., Kochert, G., Yu, Z. H., Wang, Z. Y., Khush, G. S., Coffman, W. R., and Tanksley, S. D., 1988, Molecular mapping of rice chromosomes, Theor. Appl. Genet., 76: 815–829.CrossRefGoogle Scholar
  25. Nagao, S., Takahashi, M., and Kinoshita, T., 1968, Heterotic effect of alleles at Pl-locus in rice plant, Genetic studies on rice plant, XXX, J. Fac. Agr. Hokkaido Univ., 56 (1): 45–56.Google Scholar
  26. Negrutiu, I., Shillito, R., Potrykus, I., Biasini, G., and Sala, F., 1987, Hybrid genes in the analysis of transformation conditions. I. Setting up a simple method for direct gene transfer in plant protoplasts, Plant Mol. Biol., 8: 363–373.CrossRefGoogle Scholar
  27. Oka, H. I., and Khush, G. S., eds., 1984, Rice Genetics Newsletter, Vol. 1, Japanese Rice Genetics Information Committee, Japan (1984).Google Scholar
  28. Orbach, M. J., Vollrath, D., Davis, R. W., and Yanofsky, C., 1988, An electrophoretic karyotype of Neurospora crassa, Mol. Cell Biol., 8: 1469–1473.PubMedGoogle Scholar
  29. O’Reilley, C., Shepherd, N. S., Pereira, A., Schwarz-Sommers, Z., Bertram, I., and Peterson, P. A., 1985, Molecular cloning of the al locus of Zea mays using the transposable elements En and Mul, EMBO J., 4: 877–882.Google Scholar
  30. Ou-Lee, T. M., Turgeon, R., and Wu, R., 1986, Expression of a foreign gene linked to either a plant virus or a Drosophila promoter, after electroporation of protoplasts of rice, wheat, and sorghum, Proc. Natl. Acad. Sci. U. S. A., 83: 6815–6819.PubMedCrossRefGoogle Scholar
  31. Potrykus, I., Shillito, R. D., Saul, M. W., and Paszkawski, J., 1985, Direct gene transfer—state of the art and future potential, Plant Mol. Biol. Reporter, 3: 117–128.CrossRefGoogle Scholar
  32. Rhodes, C. A., Pierce, D. A., Mettler, I. J., Mascarenhas, D., and Detmer, J. J., 1988, Genetically transformed maize plants from protoplasts, Science, 240: 204–207.PubMedCrossRefGoogle Scholar
  33. Schnepf, H. E., Wong, H. C., and Whiteley, H. R., 1985, The amino acid sequence of a crystal protein from Bacillus thuringiensis deduced from the DNA base sequence, J. Biol. Chem., 260: 6264–6272.PubMedGoogle Scholar
  34. Schwartz, D., and Cantor, C. R., 1984, Separation of yeast chromosome-sized DNA’s by pulsed field gradient gel electrophoresis, Cell, 37: 67–75.PubMedCrossRefGoogle Scholar
  35. Smith, C. L., and Cantor, C. R., 1987, Purification, specific fractionation, and separation of large DNA molecules, Methods in Enzymol., 155: 449–467.CrossRefGoogle Scholar
  36. Toriyama, K., Arimoto, Y., Uchimiya, H., and Hinata, K., 1988, Transgenic rice plants after direct gene transfer into protoplasts, Bio/Technology, 6: 1072–1074.CrossRefGoogle Scholar
  37. Walbot, V., and Bruening, G., 1988, Plant development and ribozymes for pathogens, Nature, 334: 196–197.CrossRefGoogle Scholar
  38. Wang, Y. C., Klein, T. M., Fromm, M., Cao, J., Sanford, J. C., and Wu, R., 1988, Transient expression of foreign genes in rice, wheat and soybean cells following particle bombardment, Plant Molec. Biol., 11: 433–439.CrossRefGoogle Scholar
  39. Weil, M. D., and McClelland, M., 1989, Enzymatic cleavage of a bacterial genome at a 10-base-pair recognition site, Proc. Natl. Acad. Sci. U. S. A., 86: 51–55.PubMedCrossRefGoogle Scholar
  40. Wu, R., 1988, Methods for transforming plant cells, in: “Plant Biotechnology,” S.D. Kung, and C.J. Arntzen, eds., Butterworth Publishers ( 1988 ), pp. 35–51.Google Scholar
  41. Zhang, H. M., Yang, H., Rech, E. L., Golds, T. J., Davis, A. S., Mulligan, B. J., Cocking, E. C., and Davey, M. R., 1988, Transgenic rice plants produced by electroporation mediated plasmid uptake into protoplasts, Plant Cell Reports, 7: 379–384.Google Scholar
  42. Zhang, W. G., and Wu, R., 1988, Efficient regeneration of transgenic plants from rice protoplasts and correctly regulated expression of the foreign gene in the plants, Theor. Appl. Genet., 76: 835–840.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Ray Wu
    • 1
  • Elizabeth Kemmerer
    • 1
  • David McElroy
    • 1
  1. 1.Section of Biochemistry, Molecular and Cell Biology Biotechnology BuildingCornell UniversityIthacaUSA

Personalised recommendations