Transgenic Plants

  • R. Dekeyser
  • D. Inzé
  • M. Van Montagu
Part of the Stadler Genetics Symposia Series book series (SGSS)


Currently the term “transgenic organism” is used when referring to an organism which harbors additional genetic information as the result of a genetic engineering step, namely the transfer of purified or cloned DNA. For plants there are two very different approaches for obtaining such DNA transfer. First there is the so called “natural” way of DNA transfer. This method exploits the conjugation-like DNA transfer which can occur when some soil bacteria such as Agrobacterium tumefaciens colonize plants (for recent reviews, see Zambryski, 1988; Gheysen et al.,1989). Many gene vectors have been constructed based on this transfer mechanism and these have allowed the engineering of the first transgenic plants expressing selectable marker genes (Herrera-Estrella et al., 1983). Agrobacterium-mediated gene transfer has also been the method of choice for introducing new economically important traits into plants such as insect resistance (Vaeck et al., 1987), virus resistance (Abel et al., 1986; Nelson et al., 1988) and also for constructing plants with engineered seed proteins which can be the starting material for producing peptides of importance to mammalian physiology (Vandekerckhove et al., 1989). An appreciated advantage of the Agrobacterium system is the fact that the majority of the transformed plants obtained after selection harbour one or two copies of a well defined DNA sequence. However, several important crops such as most leguminous plants and all of the Graminae remain recalcitrant to this type of DNA transfer. Some results have been obtained with such plants by employing the other DNA transfer system which is equivalent to the in vitro DNA uptake methods used with other organisms. To introduce the DNA, polyethyleneglycol (PEG), electroporation or micro injection can be used, but the recipient cell has to be a protoplast capable of regenerating (Lazzeri and Lörz, 1988; Gasser and Fraley, 1989). This severely limits the usefulness of this approach. Nevertheless the method has allowed a breakthrough in the transformation of rice (Shimamoto et al., 1989). Recently promising results have been obtained with a spectacular new mechanical method, the particle gun (Klein et al., 1987; McCabe et al., 1988; Sanford, 1989). This “ballistic” approach can probably be used with any plant species. It should allow the transformation of meristematic cells, hence enhancing the chance of obtaining transgenic plants from those species or cultivars which as yet cannot be taken through a cell culture step.


Transgenic Plant Bacillus Thuringiensis Insecticidal Crystal Protein Phosphinothricin Acetyl Transferase Tobacco Mosaic Virus Coat Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abel, P. P., Nelson, R. S., De, B., Hoffman, N., Rogers, S. G., Fraley, R. T., and Beachy, R. N., 1986, Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene, Science, 232: 738.PubMedCrossRefGoogle Scholar
  2. Bannister, J. V., Bannister, W. H., and Rotilio, G., 1987, Aspects of the structure, function and applications of superoxide dismutase, CRC Crit. Rev. Biochem., 22: 111.PubMedCrossRefGoogle Scholar
  3. Beauchamps, C., and Fridovich, I., 1971, Superoxide dismutase: improved assays and an assay applicable to acrylamide gels, Anal. Biochem., 44: 276.CrossRefGoogle Scholar
  4. Bowler, C., Alliotte, T., De Loose, M., Van Montagu, M., and Inzé, D., 1989a, The induction of manganese superoxide dismutase in response to stress in Nicotiana plumbaginifolia, EMBO J., 8: 31.PubMedGoogle Scholar
  5. Bowler, C., Alliotte, T., Van den Bulcke, M., Bauw, G., Vandekerckhove, J., Van Montagu, M., and Inzé, D., 1989b, plant mitochondrial preprotein is efficiently imported and correctly processed by yeast mitochondria, Proc. Natl. Acad. Sci. USA, 86: 3237.CrossRefGoogle Scholar
  6. Clare, D. A., Rabinowitch, H. D., and Fridovich, I., 1984, Superoxide dismutase and chilling injury in Chlorella ellipsoidea, Arch. Biochem. Bioph’s., 231: 158.CrossRefGoogle Scholar
  7. Cornai, L., Facciotti, D., Hiatt, W. R., Thompson, G., Rose, R. E., and Stalker, D. M., 1985, Expression in plants of a mutant aroA gene from Salmonella thyphimurium confers tolerance to glyphosate, Nature (London), 317: 741.CrossRefGoogle Scholar
  8. De Block, M., Botterman, J., Vandewiele, M., Dockx, J., Thoen, C., Gosselé, V., Movva, R., Thompson, C., Van Montagu, M., and Leemans, J., 1987, Engineering herbicide resistance in plants by expression of a detoxifying enzyme, EMBO J., 6: 2513.PubMedGoogle Scholar
  9. De Greef, W., Delon, R., De Block, M., Leemans, J., and Botterman, J., 1989, Evaluation of herbicide resistance in transgenic crops under field conditions, Bio/technology, 7: 61CrossRefGoogle Scholar
  10. Fridovich, I., 1978, The biology of oxygen radicals. The superoxide radical is an agent of oxygen toxicity: superoxide dismutases provide an important defense, Science, 201: 875.PubMedCrossRefGoogle Scholar
  11. Gasser, C. S., and Fraley, R. T., 1989, Genetically engineering plants for crop improvement, Science, 244: 1293.PubMedCrossRefGoogle Scholar
  12. Gheysen, G., Herman, L., Breyne, P., Van Montagu, M., and Depicker, A., 1989, Agrobacterium tumefaciens as a tool for the genetic transformation of plants, in“Genetic transformation and expression”, L. O. Butler, ed., Intercept, London, in press.Google Scholar
  13. Haider, M. Z., Knowles, B. H., and Ellar, D. J., 1986, Specificity of Bacillus thuringiensis var. colmeri insecticidal Sendotoxin is determined by differential proteolytic processing of the protoxin by larval gut proteases, Eur. J. Biochem., 156: 531.Google Scholar
  14. Halliwell, B., 1984, “Chloroplast metabolism — The structure and function of chloroplasts in green leaf cells”, Clarendon Press, Oxford.Google Scholar
  15. Herrera-Estrella, L., Depicker, A., Van Montagu, M., and Schell, J., 1983, Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector, Nature (London), 303: 209.CrossRefGoogle Scholar
  16. Higuchi, T., 1981, Biosynthesis of lignin, in “Plant Carbohydrates II”, (Encyclopedia of Plant Physiology, New Series Vol. 12B ), W. Tanner, ed., Springer-Verlag, Berlin, pp. 194–224.CrossRefGoogle Scholar
  17. Hofmann, C., Vanderbruggen, H., Höfte, H., Van Rie, J., Jansens, S., and Van Mellaert, H., 1988, Specificity of Bacillus thuringiensis 6-endotoxine is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts, Proc. Natl. Acad. Sci. USA, 85: 7844.PubMedCrossRefGoogle Scholar
  18. Höfte, H., and Whiteley, H. R., 1989, Insecticidal crystal proteins of Bacillus thuringiensis, Microbiol. Rev., 53: 242.PubMedGoogle Scholar
  19. Höfte, H., Van Rie, J., Jansens, S., Van Houtven, A., Vanderbruggen, H., and Vaeck, M., 1988, Monoclonal antibody analysis and insecticidal spectrum of three types of lepidopteran-specific insecticidal crystal proteins of Bacillus thuringiensis, Appl. Envir. Microbiol., 54: 2010.Google Scholar
  20. Klein, T. M., Wolf, E. D., Wu, R., and Sanford, J. C., 1987, High-velocity microprojectiles for delivering nucleic acids into living cells, Nature (London), 327: 70.CrossRefGoogle Scholar
  21. Krieg, A., 1986, Bacillus thuringiensis ein mikrobielles Insektizid, Acta Phytomedia, 10: 1.Google Scholar
  22. Laties, G. G., 1982, The cyanide-resistant alternative path in higher plant respiration, Ann. Rev. Plant Physiol., 33: 519.CrossRefGoogle Scholar
  23. Lazzeri, P., and Lörz, H., 1988, In vitro genetic manipulation of cereals and grasses, Adv. Cell Culture, 6: 291.Google Scholar
  24. Lilley, M., Ruffell, r. N., and Somerville, H. J., 1980, Purification of the insecticidal toxin in crystals of Bacillus thuringiensis, J. Gen. Microbiol., 118: 1.PubMedGoogle Scholar
  25. Matters, G. L., and Scandalios, J. G., 1986, Effect of the free radical-generating herbicide paraquat on the expression of the superoxide dismutase (Sod) genes in maize, Biochem. Biophys. Acta, 882: 29.PubMedCrossRefGoogle Scholar
  26. McCabe, D. E., Swain, W. F., Martinell, B. J., and Christou, P., 1988, Stable transformation of soybean (Glycine max) by particle acceleration, Bio/technology, 6: 923.CrossRefGoogle Scholar
  27. Monk, L. S., Fagerstedt, K. V., and Crawford, R.M.M., 1987, Superoxide dismutase as an anaerobic polypeptide. A key factor in recovery from oxygen deprivation in Iris pseudacorus? Plant Physiol., 85: 1016.PubMedCrossRefGoogle Scholar
  28. Mudd, S. H., Finkelstein, J. D., Irreverre, F., and Laster, L., 1965, Transsulfuration in mammals. Microassays and tissue distributions of three enzymes of the pathway, J. Biol. Chem., 240; 4382.PubMedGoogle Scholar
  29. Murakami, T., Anzai, H., Imai, S., Satoh, A., Nagaoka, K., and Thompson, C. J., 1986, Bialaphos biosynthetic genes of Streptomyces hygroscopicus: molecular cloning and characterization of the gene cluster, Mol. Gen. Genet., 205: 42.CrossRefGoogle Scholar
  30. Nelson, R. S., McCormick, S. M., Delanney, W., Dubé, P., Layton, J., Anderson, E. J., Kaniewska, M., Proksch, R. K., Horsch, R. B., Rogers, S. G., Fraley, R. T., and Beachy, R. N., 1988, Virus tolerance, plant growth, and field performance of transgenic tomato plants expressing coat protein from tobacco mosaic virus, Bio/technology, 6: 403.CrossRefGoogle Scholar
  31. Peleman, J., Boerjan, w., Engler, G., Seurinck, J., Botterman, J., Alliotte, T., Van Montagu, M., and Inzé, D., 1989, Strong cellular preference in the expression of a housekeeping gene of Arabidopsis thaliana encoding S-adenosylmethionine synthetase, The Plant Cell, 1: 81.PubMedCrossRefGoogle Scholar
  32. Peleman, J., Saito, K., Cottyn, B., Engler, G., Seurinck, J., Van Montagu, M., and Inzé, D., 1989, Structure and expression of the S-adenosylmethionine synthetase gene family in Arabidopsis thaliana,Gene, in press.Google Scholar
  33. Rabinowitch, H. D., Sklan, D., and Budowski, P., 1982, Photo-oxidative damage in the ripening tomato fruit: protective role of superoxide dismutase, Physiol. Plant., 54: 369.CrossRefGoogle Scholar
  34. Raskin, I., Ehmann, A., Melander, W. R., and Meeuse, B.J.D., 1987, Salicylic acid: a natural induce of heat production in Arum lilies, Science, 237: 1601.PubMedCrossRefGoogle Scholar
  35. Sanford, J. C., 1988, The biolistic process, Trends Biotech., 6: 299.CrossRefGoogle Scholar
  36. Schatz, G., 1987, Signals guiding proteins to their correct locations in mitochondria, Eur. J. Biochem., 165: 1.Google Scholar
  37. Shaaltiel, Y., and Gressel, J., 1987, Kinetic analysis of resistance to paraquat in Conyza. Evidence that paraquat transiently inhibits leaf chloroplast reactions in resistant plants, Plant Physiol., 85: 869.PubMedCrossRefGoogle Scholar
  38. Shah, D. M., Horsch, R. b., Klee, H. J., Kishore, G. M., Winter, J. A., Turner, N. E., Hironaka, C. M., Sanders, P. R., Gasser, C. S., Aykent, S., Siegel, N. R., Rogers, S. G., and Fraley, R. T., 1986, Engineering herbicide tolerance in transgenic plants, Science, 233: 478.PubMedCrossRefGoogle Scholar
  39. Shimamoto, K., Terada, R., Izawa, T., and Fujimoto, H., 1989, Fertile transgenic rice plants regenerated from transformed protoplasts, Nature (London), 338: 274.CrossRefGoogle Scholar
  40. Teeri, T. H., Lehväshlaiho, H., Franck, M., Uotila, J., Heino, P., Palva, E. T., Van Montagu, M., and Herrera-Estrella, L., 1989, Gene fusions to lacZ reveal expression patterns of chimeric genes in transgenic plants, EMBO J., 8: 343.PubMedGoogle Scholar
  41. Vaeck, M., Reynaerts, A., Höfte, H., Jansens, S., De Beuckeleer, M., Dean, C., Zabeau, M., Van Montagu, M., and Leemans, J., 1987, Insect resistance in transgenic plants expressing modified Bacillus thuringiensis toxin genes, Nature (London), 328: 33.CrossRefGoogle Scholar
  42. Valvekens, D., Van Montagu, M., and Van Lijsebettens, M., 1988, Agrobacterium tumefaciens-mediated transformation of Arabidopsis root explants using kanamycin selection, Proc. Natl. Acad. Sci. USA, 85: 5536.PubMedCrossRefGoogle Scholar
  43. Vanderkerckhove, J., Van Damme, J., Van Lijsebettens, J., Botterman, J., De Block, M., Vandewiele, M., De Clercq, A., Leemans, J., Van Montagu, M., and Krebbers, E., 1989, Enkephalins produced in transgenic plants using modified 2S seed storage proteins, Bio/technology, 7: 929.CrossRefGoogle Scholar
  44. Velten, J., Velten, L., Hain, R., and Schell, J., 1984, Isolation of a dual plant promoter fragment from the Ti plasmid of Agrobacterium tumefaciens, EMBO J., 3: 2723.PubMedGoogle Scholar
  45. Yang, S. F., and Hoffman, N. E., 1984, Ethylene biosynthesis and its regulation in higher plants, Ann. Rev. Plant Physiol., 35: 155.CrossRefGoogle Scholar
  46. Zambryski, P., 1988, Basic processes underlying Agrobacteriummediated DNA transfer to plant cells, Ann. Rev. Genet., 22: 1.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • R. Dekeyser
    • 1
  • D. Inzé
    • 1
  • M. Van Montagu
    • 1
  1. 1.Laboratorium voor GeneticaRijksuniversiteit GentGentBelgium

Personalised recommendations