Clonal Analysis of Human T Lymphocytes Inducing B Cell Growth

  • Maria Cristina Mingari
  • Lorenzo Moretta
Part of the NATO ASI Series book series (NSSA, volume 123)


The central role of T lymphocytes in the control of antibody responses has been known since long time. Nevertheless, only during the last few years major progresses have been made towards 1) the understanding of the functional and pheno-typic characteristics of T cells which influence B cell growth and differentiation, 2) The nature of soluble factors involved in signalling between T and B lymphocytes. 3) The stages and mechanisms involved in B cell activation, proliferation and differentiation (1). For the most part, this favorable situation can be traced to the merging of new technologies. On the one hand, the use of monoclonal antibodies has provided omogeneous reagents for the unambiguous definition of the pheno-typic characteristics of T cell subsets and clones (2) and of B cells at different stages of activation. In addition, mAbs specific for some lymphokines and/or their cell surface receptors allowed a more precise definition of the involvement of these mediators in B cell growth or differentiation (3–6). At the same time, molecular ingeneering techniques provided scientists with some lymphokines in recombinant form (7): it thus became evident that several different activities could be attribued to single lymphokines. In addition, rapid advances in flow microfluorometry have provided a precise and objective means to quantify given surface markers and the extent to which the marker is expressed. Finally the improvement of T cell cloning techniques made it possible to grow virtually all T lymphocytes, thus allowing to identify both frequencies and subset distribution of T cells responsible for B cell proliferation and differentiation.


Cloning Efficiency Clonal Proliferation Unambiguous Definition Subset Distribution Identical Molecular Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Moller G. (Ed.), Immunol. Rev. 78, 1984.Google Scholar
  2. 2).
    Reinherz, E.L., Schlossman, S.F. cell, 19, 821, 1980.CrossRefGoogle Scholar
  3. 3).
    Tsudo, M., Uchiyama, T., Huchino, H. J. Exp. Med. 160, 612, 1984.CrossRefGoogle Scholar
  4. 4).
    Mingari, M.C., Gerosa, F., Carra, G., Accolla, R.S., Moretta, A., Zubler, R.H., Waldmann, T.A., Moretta, L. Nature 312, 641, 1984.CrossRefGoogle Scholar
  5. 5).
    Waldmann, T.A., C.K. Goldman, R.J. Robb, J.M. Depper, W.J. Leonard, S.O. Sharrow, K.F. Bongiovanni, S.J. Korsmeyer, and W.C. Green., J. Exp. Med. 160, 1450, 1984.CrossRefGoogle Scholar
  6. 6).
    Muraguchi, A., J.H. Kehrl, D.L. Longo, D.J. Volkman, K.A. Smith, and A.S. Fauci. J. Exp. Med. 161, 181, 1985.CrossRefGoogle Scholar
  7. 7).
    Devos, R., Plaetnick, G., Cherautre, H., Simons, G., Degrave, W., Tavernier, J., Rement, E. and Fiers, W. Nucleric Acid Res. 11, 4307, 1983.CrossRefGoogle Scholar
  8. 8).
    Romagnani, S., M.G. Giudizi, R. Biagiotti, F. Almerigogna, E. Maggi, G.F. Del Prete, and M. Ricci. 1981. Surface immuno globulins are involved in the interaction of protein A with human B cells and in the triggering of B cell proliferation induced by protein A-containing Staphylococcus aureus. J. Immunol. 127:1307.Google Scholar
  9. 9).
    Muraguchi, A., and A.S. Fauci, J. Immunol. 129:1104, 1982.Google Scholar
  10. 10).
    Zubler, R.H., Lowenthal, J.W., Erard, F., Hashimoto, N., Devos, R., MacDonald H.R.: J. Exp. Med., 160, 1170, 1984.CrossRefGoogle Scholar
  11. 11).
    Mingari, M.C., Gerosa, G., Moretta, A., Zubler, R.H., Moretta, L. Eur. J. Immunol., 15, 193, 1985.CrossRefGoogle Scholar
  12. 12).
    Butler, J.L., A. Muraguchi, H.C. Lane, and A.S. Fauci. J. Exp. Med. 157, 60, 1982.CrossRefGoogle Scholar
  13. 13).
    Okada, M, N. Sakaguchi, N. Yoshimura, H. Hara, K. Shimuzu, N. Yoshida, K. Yoshizaki, S. Kishimoto, Y. Yamamura, and T. Kishimoto. J. Exp. Med. 157, 588, 1983.CrossRefGoogle Scholar
  14. 14).
    Romagnani, S., Giudizi, M.G., Biagiotti, R., Almerigogna, F., Mingari, M.C., Maggi, E., Liang, C-M., Moretta, L. J. Immunol. 1986 (in press).Google Scholar
  15. 15).
    Sidman, C.L., J.D. Marshall, L.D. Shultz, P.W. Grey, and H.M. Johnson. Nature (Lond.). 309, 801, 1984.CrossRefGoogle Scholar
  16. 16).
    Nakagawa, T., T. Hirano, N. Nakagawa, K. Yoshizaki, and T. Kishimoto. J. Immunol. 134, 959, 1985.Google Scholar
  17. 17).
    Romagnani, S., Giudizi, M.G., Almerigogna, F., Biagiotti, R., Alessi, A., Mingari, M.C., Liang, C-M, Moretta, L., Ricci, M. Eur. J. Immunol. 1986. (in press).Google Scholar
  18. 18).
    Mingari, M.C., Moretta, A., Maggi, E., Pantaleo, G., Gerosa, F., Romagnani, S., Moretta, L. Eur. J. Immunol. 14, 1066.Google Scholar
  19. 19).
    Moretta, A., Pantaleo, G., Moretta, L., Mingari, M.C., Cerottini, J.C. Direct demonstration of the clonogenic potential of every human peripheral blood T cells. Clonal analysis of HLA-DR expression and cytolytic activity. J. Exp. Med. 157, 743, 1985.CrossRefGoogle Scholar
  20. 20).
    Moretta, A., Frequency and surface phenotype of human T lymphocytes producing Interleukin-2. Analysis by limiting dilution and cell cloning Eur. J. Immunol. 15, 148, 1985.Google Scholar
  21. 21).
    Moretta, A., Pantaleo, G., Moretta, L. Mingari, M.C., Cerottini, J.C. J. Exp. Med. 158, 571, 1983.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Maria Cristina Mingari
    • 1
  • Lorenzo Moretta
    • 1
  1. 1.Istituto Nazionale per la Ricerca sul CancroUniversity of GenovaGenovaItaly

Personalised recommendations