Regulation of the Assembly and Expression of Immunoglobulin Genes: Variable Region Assembly and Heavy Chain Class Switching

  • R. A. DePinho
  • G. D. Yancopoulos
  • T. K. Blackwell
  • M. G. Reth
  • K. Kruger
  • S. G. Lutzker
  • F. W. Alt
Part of the NATO ASI Series book series (NSSA, volume 123)


To elucidate further the general mechanisms which control the assembly and expression of Immunoglobulin variable region gene segments and heavy-chain class switching, we have exploited Abelson murine leukemia virus (A-MuLV) transformed pre-B cells as a model system. The Abelson virus is a replication defective retrovirus which is unique in its capacity to transform very early B-lineage cells in vitro (1). A-MuLV transformants generated from murine fetal liver or adult bone marrow have provided both a static representation of various pre-B cell differentiation stages, as well as a dynamic view of pre-B cell immunodifferentiation events (2,3). Our analyses of these lines have provided a variety of new and sometimes surprising findings regarding the early stages of B cell differentiation; and importantly, all of these novel aspects first observed in A-MuLV transformants were found to reflect events that occur early in normal B lineage cells in vitro. Furthermore, we have utilized gene transfer technology to gain additional insight into the molecular events involved with the regulation of immunogloblin and T cell receptor variable region (V) gene assembly (3).


Gene Segment Class Switch Immunoglobulin Heavy Chain Variable Region Gene Allelic Exclusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rosenberg, N. and Baltimore, D., A quantitative assay for transformation of bone-marrow cells by A-MuLV, J. Exp. Med. 143:1453 (1976).CrossRefGoogle Scholar
  2. 2.
    Yancopoulos, G.D. and Alt, F.W., Regulation of the assembly and expression of variable region genes, Ann. Rev. Immunol., in press.Google Scholar
  3. 3.
    Alt, F.W., Blackwell, T.K., DePinho, R.A., Reth, M.G., and Yancopoulos, G.D., Regulation of genome rearrangement events during lymphocyte differentiation, Immunol. Rev., in press.Google Scholar
  4. 4.
    Givol, D., The antibody combining site, Int. Rev. Biochem. 23:71 (1979).Google Scholar
  5. 5.
    Kabat, E.A., Antibody diversity versus antibody complementarity, Pharm. Rev. 34:23 (1982).Google Scholar
  6. 6.
    Hilschmann, N. and Craig, L.C., Amino acid sequence studies with Bence Jones proteins, Proc. Natl. Acad. Sci. USA 53:1403 (1965).CrossRefGoogle Scholar
  7. 7.
    Wu, T.T. and Kabat, E.A., An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity, J. Exp. Med. 132:211 (1970).CrossRefGoogle Scholar
  8. 8.
    Tonegawa, S., Somatic generation of antibody diversity, Nature 302:575 (1983).CrossRefGoogle Scholar
  9. 9.
    Winkelhake, J.L., Immunoglobulin structure and effector functions, Immunochem. 15:695 (1978).CrossRefGoogle Scholar
  10. 10.
    Early, P., Huang, H., Davis, M. Calame, K. and Hood, L., An Immunoglobulin heavy chain variable region gene is generated from three segments of DNA: V(H), D and J(H), Cell 19:981 (1980).CrossRefGoogle Scholar
  11. 11.
    Sakano, H., Maki, R., Kurosawa, Y., Roeder, W. and Tonegawa, S., Two types of somatic recombination are necessary for the generation of complete Immunoglobulin heavy chain genes, Nature 286:676 (1980).CrossRefGoogle Scholar
  12. 12.
    Ravetch, J.V., Siebenlist, U., Korsmeyer, S., Waldmann, T. and Leder, P., Structure of the Immunoglobulin μ locus: Characterization of embryonic and rearranged J and D genes, Cell 27:583 (1981).CrossRefGoogle Scholar
  13. 13.
    Wood, C. and Tonegawa, S., Diversity and joining segments of mouse Ig genes are closely linked and in the same orientation, Proc. Natl. Acad. Sci. USA 80:3030 (1980).CrossRefGoogle Scholar
  14. 14.
    Kurosawa, Y. and Tonegawa, S., Organization, structure and assembly of immunoglobulin heavy chain diversity (D) DNA segments, J. Exp. Med. 155:201 (1982).CrossRefGoogle Scholar
  15. 15.
    Kemp, D.J., Tyler, B., Bernard, O., Gough, N., Gernodakis, S., Adams, J.M. and Cory, S., Organization of genes and spacers within the mouse immunoglobulin V(H) locus, J. Mol. Appl. Genet. 1:245 (1981).Google Scholar
  16. 16.
    Bothwell, A.L.M., Paskind, M., Reth, M., Imanishi-Kari, T. and Baltimore, D., Molecular basis of a mouse strain-specific anti-hapten response. Cell 24:625 (1981).CrossRefGoogle Scholar
  17. 17.
    Loh, D.Y., Bothwell, A.L.M., White-Scharf, M.E., Imanishi-Kari, T. and Baltimore, D., Molecular basis of a mouse strain-specific anti-hapten response, Cell 33:85 (1983).CrossRefGoogle Scholar
  18. 18.
    Brodeur, P. and Riblett, R., The immunoglobulin heavy chain variable reigon (Ig-H-V) in the mouse. I. 100 IgH-V genes comprise 7 families of homologous genes, Eur. J. Immunol. 14:922 (1984).CrossRefGoogle Scholar
  19. 19.
    Brodeur, P., Thompson, M.A. and Riblett, R., The content and organization of mouse IgH-V families. In Regulation of the Immune System, UCLA Symposia on Molecular and Cellular Biology, New Series, Vol. 18. (New York: Alan R. Liss), pp. 445 (1984).Google Scholar
  20. 20.
    Cory, S., Tyler, B.M. and Adams, J.M., Sets of Ig V(K) genes homologous to ten cloned V(K) genes, J. Mol. App. Genet. 1:103 (1981).Google Scholar
  21. 21.
    Seising, E. and Storb, U., Mapping of immunoglobulin variable region genes: relationship to the “deletion” model of immunoglobulin gene rearrangement, Nucl. Acids Res. 9:5725 (1981).CrossRefGoogle Scholar
  22. 22.
    Sakano, H., Juppi, K., Heinrich, G., and Tonegawa, S., Sequences at the somatic recombination sites of immunoglobulin light chain genes, Nature 280:288 (1979).CrossRefGoogle Scholar
  23. 23.
    Max, E.E., Seidman, J.G. and Leder, P., Sequences of five potential recombination sites encoded close to an immunoglobulin region gene, Proc. Natl. Acad. Sci. USA 76:3450 (1979).CrossRefGoogle Scholar
  24. 24.
    Einsen, H.N. and Reilly, E.B., Lambda chains and genes in inbred mice, Ann. Rev. Immunol. 3:337 (1985).CrossRefGoogle Scholar
  25. 25.
    Alt, F.W., Yancopoulos, G.D., Blackwell, T.K., Wood, C., Thomas, E., Boss, M., Coffman, R., Rosenberg, N., Tonegawa, S. and Baltimore, D., Ordered rearrangement of immunoglobulin heavy chain variable region segments, EMBO J. 3:1209 (1984).Google Scholar
  26. 26.
    Alt, F.W. and Baltimore, D., Joining of immunoglobulin H chain gene segments, implications from a chromosome with evidence of three D-J(H) fusions, Proc. Natl. Acad. Sci. USA 79:4118 (1982).CrossRefGoogle Scholar
  27. 27.
    Desiderio, S.V., Yancopoulos, G.D., Paskind, M., Thomas, E., Boss, M.A., Landau, N., Alt, F.W. and Baltimore, D., Insertion of N regions into heavy chain genes is correlated with expression of terminal deoxytransferase in B cells, Nature 311:752 (1984).CrossRefGoogle Scholar
  28. 28.
    Blackwell, T.K. and Alt, F.W., Site-specific recombination between Ig D and J(H) segments that were introduced into the genome of a murine pre-B cell line, Cell 37:105, 1984.CrossRefGoogle Scholar
  29. 29.
    Yancopoulos, G.D., Blackwell, T.K., Sun, H.-Y., Hood, L. and Alt, F.W., Joining between introduced but not endogenous T-cell receptor variable region gene segments in pre-B cells: Evidence that B and T cells use a common recombinase. Cell, in press.Google Scholar
  30. 30.
    Yancopoulos, G.D. and Alt, F.W., Developmently controlled and tissue-specific expression of unrearranged V(H) gene segments, Cell 40:271 (1985).CrossRefGoogle Scholar
  31. 31.
    Banerji, J., Olson, L. and Schaffner, W., A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes, Cell 33:729 (1983).CrossRefGoogle Scholar
  32. 32.
    Gilles, S.D., Morrison, S.L., Oi, V.T. and Tonegawa, S., A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene, Cell 33:717 (1983).CrossRefGoogle Scholar
  33. 33.
    Neuberger, M.S., Expression and regulation of immunoglobulin heavy chain gene transfected into lymphoid cells, EMBO J. 2:1373 (1983).Google Scholar
  34. 34.
    Mason, J.O., Williams, G.T. and Neuberger, M.S., Transcription cell type specificity is conferred by an Ig V(H) gene promoter that includes a functional consensus sequence, Cell 40:479 (1985).CrossRefGoogle Scholar
  35. 35.
    Grosschedl, R. and Baltimore, D., Cell-type specificity of immunoglobulin gene expression is regulated by at least three DNA sequence elements, Cell 41:885 (1985).CrossRefGoogle Scholar
  36. 36.
    Reth, M.G. and Alt, F.W., Novel immunoglobulin heavy chains are produced from DJ(H) gene segment rearrangement in lymphoid cells, Nature 312:418 (1984).CrossRefGoogle Scholar
  37. 37.
    Pernis, B.G., Chiappino, G., Kelus, A.S. and Gell, P.G.H., Cellular localization of immunoglobulins with different allotype specificities in rabbit lymphoid tissues J. Exp. Med. 122:853 (1965).CrossRefGoogle Scholar
  38. 38.
    Cebra, J., Colberg, J.E. and Dry, S., Rabbit lymphoid cells differentiated with respect to ∝-, ♉-and μ-heavy Polypeptide chains and to allotypic markers AA1 and AA2, J. Exp. Med. 123:547 (1966).CrossRefGoogle Scholar
  39. 39.
    Alt, F.W., Exclusive immunoglobulin genes, Nature 312:502 (1984).CrossRefGoogle Scholar
  40. 40.
    Alt, F.W., Enea, V., Bothwell, A.L.M. and Baltimore, D., Activity of multiple light chain genes in murine myeloma lines expressing a single, functional light chain, Cell 21:1 (1980).CrossRefGoogle Scholar
  41. 41.
    Kuehl, W.M., Kaplan, B.A., Scharff, M.D., Nau, M., Honjo, T., Leder, P., Characterization of light chain and light constant region fragments mRNAs in MPC11 mouse myeloma cells and variants, Cell 5:139 (1975).CrossRefGoogle Scholar
  42. 42.
    Alt, F.W., Rosenberg, N., Enea, V., Siden, E. and Baltimore, D., Multiple immunoglobulin heavy-chain gene transcripts in Abelson murine leukemia virus-transformed lymphoid cell lines, Mol. Cell. Biol. 2:386 (1982).Google Scholar
  43. 43.
    Reth, M.G., Amirati, P., Jackson, S. and Alt, F.W., Regulated progression of a cultured Pre-B cell line to the B cell stage, Nature 317:353 (1985).CrossRefGoogle Scholar
  44. 44.
    Alt, F.W., Rosenberg, N., Lewis, S., Thomas, E. and Baltimore, D., Organization and reorganization of immunoglobulin genes in an A-MuLV transformed cells: rearrangement of heavy but not light chain genes. Cell 27:381 (1981).CrossRefGoogle Scholar
  45. 45.
    Hood, L., Kronenberg, M. and Hunkapiller, T., T cell antigen receptor and the immunoglobulin supergene family, Cell 40:225 (1985).CrossRefGoogle Scholar
  46. 46.
    Blackwell, T.K., Yancopoulos, G.D. and Alt, F.W., Joining of immunoglobulin heavy chain variable region segments in vivo and within a recombination substrate. In Molecular Biology of Development, UCLA Symposia on Molecular and Cellular Biology, New Series, Vol. 19. (New York: Alan R. Liss), pp. 537 (1984).Google Scholar
  47. 47.
    Yancopoulos, G.D., Desiderio, S.V., Paskind, M., Kearney, J.F. and Baltimore, D., Preferential utilization of the most J(H) proximal V(H) gene segments in pre-B cell lines, Nature 311:727 (1984).CrossRefGoogle Scholar
  48. 48.
    Perlmutter, R.M., Kearney, J.F., Chang, S.P. and Hood, L.E., Developmentally controlled expression of Ig V(H) genes, Science 227:1597 (1984).CrossRefGoogle Scholar
  49. 49.
    Manheimer-Lory, A., Monestier, M., Bellon, B., Alt, F.W., Bona, C., Anti-Immunoglobulin antibodies VII. V(H) genes and idiotypy of rheumatoid factor, PNAS, in press.Google Scholar
  50. 50.
    Shimizu, A. and Honjo, T., Ig class switching, Cell 36:801 (1984).CrossRefGoogle Scholar
  51. 51.
    Marcu, K. and Cooper, M., New views of the immunoglobulin heavy-chain switch, Nature 298:243 (1982).Google Scholar
  52. 52.
    Alt, F.W., Bothwell, A.L.M., Knapp, M., Siden, E., Mather, E., Koshlan, M. and Baltimore, D., Synthesis of secreted and membrane-bound immunoglobulin mu heavy chains is directed by mRNAs that differ at their 3′-ends, Cell 20:293 (1980).CrossRefGoogle Scholar
  53. 53.
    Pernis, B., Farni, L. and Luzzati, A.L., Synthesis of multiple immunoglobulin classes by single lymphocytes. Cold Spring Harbor Symp. Quant. Biol. 41:175 (1976).CrossRefGoogle Scholar
  54. 54.
    Shimizu, A., Takahashi, N., Yaiota, Y. and Honjo, T., Organization of the constant-region gene family of the mouse immunoglobulin heavy chain, Cell 24:499 (1982).CrossRefGoogle Scholar
  55. 55.
    Marcu, K.B., Lang, R.B., Stanton, L.W. and Harris, L.J., A model for the molecular requirements of immunoglobulin heavy chain class switching, Nature 298:87 (1982).CrossRefGoogle Scholar
  56. 56.
    Kataoka, T., Kawakami, T., Takahashi, N. and Honjo, T., Rearrangement of immunoglobulin 1 chain gene and mechanism for heavy-chain class switch, Proc. Natl. Acad. Sci. USA 77:919 (1980).CrossRefGoogle Scholar
  57. 57.
    Akira, S., Sugiyama, H., Yoshida, N., Kikutani, H., Yamamura, Y. and Kishimoto, T., Isotype switching in murine pre-B cell lines, Cell 34:545 (1983).CrossRefGoogle Scholar
  58. 58.
    DePinho, R.A., Kruger, K., Andrews, N., Lutzker, S., Baltimore, D., and Alt, F.W., Molecular basis of heavy-chain class switching and switch region deletion in an Abelson transformed cell line Mol. Cell Biol. 4:2905 (1984).Google Scholar
  59. 59.
    Alt, F.W., Rosenberg, N., Casanova, R.J., Thomas, E. and Baltimore, D., Immunoglobulin heavy chain class switching and inducible expression in an A-MuLV transformed cell line Nature 296:325 (1982).CrossRefGoogle Scholar
  60. 60.
    Burrows, R.D., Beck-Engeser, G.B. and Walb, M.R., Immunoglobulin heavy-chain class switching in a pre-B cell line is accompanied by DNA rearrangement, Nature 306:243 (1983).CrossRefGoogle Scholar
  61. 61.
    Lennon, G.G., and Perry, R.P., Cμ-containing transcripts initiate heterogeneously within the IgH enhancer region and contain a novel 5′ nontranslatable exon, Nature, in press.Google Scholar
  62. 62.
    Stravnezer, J., Abbot, J. and Sirlin, S., Ig H-chain switching in cultured 129 murine B lymphoma cells, committment to an IgA or IgE switch, Curr. Top. Microbiol. Immunol. 113:109 (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • R. A. DePinho
    • 1
  • G. D. Yancopoulos
    • 1
  • T. K. Blackwell
    • 1
  • M. G. Reth
    • 1
  • K. Kruger
    • 1
  • S. G. Lutzker
    • 1
  • F. W. Alt
    • 1
  1. 1.College of Physicians and Surgeons of Columbia UniversityNew YorkUSA

Personalised recommendations