Advertisement

Rhabdovirus Genetics

  • Craig R. Pringle
Part of the The Viruses book series (VIRS)

Abstract

There are five families of RNA viruses in which the negative strand is sequestered in the extracellular virion. Viruses of two of these families, the Rhabdoviridae and the Paramyxoviridae, have unitary linear genomes, whereas viruses of the other three families, Arenaviridae, Bunyaviridae, and Orthomyxoviridae, have segmented genomes comprising, respectively, two, three, and seven or eight subunits. The informational macromolecules that comprise the genomes of rhabdoviruses and paramyxoviruses are among the largest functional RNA molecules and are exceeded in size only by those of the plus-strand coronaviruses. Reanney (1982, 1984) has calculated that the upper size limit for any RNA virus genome cannot be much in excess of 17,600 nucleotides (mol. wt. ≈5.7 × 106) as a consequence of the low copying fidelity of RNA polymerases. The segmentation of the genomes of the other negative-strand viruses may be a consequence of such constraints on molecular size or a device for decoupling the transcription of individual genes. Whatever the reason, the genetic properties of the segmented-genome viruses differ substantially from those of the unsegmented-genome viruses, because variation in the former is generated by reassortment of genome subunits as well as by mutation. Mutation is the sole mechanism of variation in unsegmented-genome viruses, since the intramolecular recombination observed with positivestrand RNA viruses does not seem to be permissible for any negativestrand RNA virus.

Keywords

Rabies Virus Vesicular Stomatitis Virus Complementation Group Infectious Hematopoietic Necrosis Virus Vesicular Stomatitis Virus Glycoprotein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agol, V. I., Grachev, V. P., Drozdov, S. G., Kolesnikova, M. S., Kozlov, V. G., Ralph, N. M., Romanova, L. I., Tolskaya, E. A., Tyafanov, A. V., and Viktorova, E. G., 1984, Construction and properties of intertypic poliovirus recombinants: First approximation mapping of the major determinants of virulence, Virology 136: 41.PubMedCrossRefGoogle Scholar
  2. Akashi, H., Gay, M., Ihara, T., and Bishop, D. H. L., 1984, Localised conserved regions of the SRNA gene products of bunyaviruses are revealed by sequence analyses of the Simba serogroup Aino virus, Virus Res. 1: 51.PubMedCrossRefGoogle Scholar
  3. Anilionis, A., Wunner, W. H., and Curtis, P. J., 1981, Structure of the glycoprotein gene in rabies virus, Nature (London) 294: 275.Google Scholar
  4. Aubert, M. F. A., Bussereau, F., and Blancon, J., 1980, Pathogenic, immunogenic and protective powers of ten temperature sensitive mutants of rabies virus in mice, Ann. Virol. (Inst. Pasteur) 131E: 217.Google Scholar
  5. Auperin, D. D., Romanowski, V., Galinski, M., and Bishop, D. H. L., 1984, Sequencing studies of Pichinde arenavirus S RNA indicate a movel coding strategy, an ambisense viral S RNA, J. Virol. 52: 897.PubMedGoogle Scholar
  6. Banerjee, A. K., Rhodes, D. P., and Gill, D. S., 1984, Complete sequence of the mRNA coding for the N protein of vesicular stomatitis virus (New Jersey serotype), Virology 137: 432.PubMedGoogle Scholar
  7. Bay, P. H. S., and Reichmann, M. E., 1979, UV inactivation of the biological activity of defective interfering particles generated by vesicular stomatitis virus, J. Viro1. 32: 876.Google Scholar
  8. Bell, J. C., and Prevec, L., 1985, Phosphorylation sites on phosphoprotein NS of vesicular stomatitis virus. J. Virol. 54: 697.PubMedGoogle Scholar
  9. Belle-Isle, H. D., and Emerson, S. U., 1982, Use of a hybrid infectivity assay to analyse primary transcription of temperature-sensitive mutants of the New Jersey serotype of vesicular stomatitis virus, J. Virol. 43: 37.Google Scholar
  10. Bergmann, J. E., Tokuyasu, K. T., and Singer, S. J., 1981, Passage of an integral membrane protein, the vesicular stomatitis virus glycoprotein, through the Golgi apparatus en route to the plasma membrane, Proc. Natl. Acad. Sci. U.S.A. 78: 1746.PubMedCrossRefGoogle Scholar
  11. Blumberg, B. M., Giorgio, C., and Kolakofsky, D., 1983, N protein of vesicular stomatitis virus selectively encapsidates leader RNA in vitro, Cell 32: 559.PubMedCrossRefGoogle Scholar
  12. Brand, C., and Palese, P., 1980, Sequential passage of influenza virus in embryonated egg or tissue culture: Emergence of mutants, Virology 107: 424.PubMedCrossRefGoogle Scholar
  13. Brown, E., and Prevec, L., 1982, Characterization of the electrophoretic mobility mutation in the N protein of the is D1 mutant of vesicular stomatitis virus New Jersey serotype, Can. J. Biochem. 60: 1065.Google Scholar
  14. Brown, F., Bishop, D. H. L., Crick, J., Francki, R. I. B., Holland, J. J., Hall, R., Johnson, K., Martelli, G., Murphy, F. A., Obijeski, J. F., Peters, D., Pringle, C. R., Reichmann, M. E., Schneider, L. G., Shope, R. E., Simpson, D. I. H., Summers, D. F., and Wagner, R. R., 1979, Rhabdoviridae, Intervirology 12: 1.CrossRefGoogle Scholar
  15. Bruck, C., Portelle, D., Bumy, A., and Zavada, J., 1982, Topographical analysis by mono-clonal antibodies of BLV-gp 51 epitopes involved in viral functions, Virology 122: 353.PubMedCrossRefGoogle Scholar
  16. Brun, G., 1963, Etude d’une association du virus et de son hôte la drosophile: l’Etat stabilisée, Thèse Biol. Exp.Google Scholar
  17. Brun, G., 1981, Are the Drosophila ref genes for Piry and Sigma rhabdoviruses identical?, in: The Replication of Negative Strand Viruses ( D. H. L. Bishop and R. W. Compans, eds.), pp. 921–928, Elsevier/North-Holland, New York.Google Scholar
  18. Brun, G., 1984, Host-range mutants of Piry virus: A new type of mutant in Drosophila, in: Negative Strand Viruses: Paramyxoviruses and Rhabdoviruses ( D. H. L. Bishop and R. W. Compans, eds.), pp. 413–420, Academic Press, Orlando, Florida.Google Scholar
  19. Brun, G., and Plus, N., 1980, The viruses of Drosophila, in: The Genetics and Biology of Drosophila ( M. Ashburner and T. R. F. Wright, eds.), pp. 625–693, Academic Press, London.Google Scholar
  20. Buller, R. M. L., 1975, Biological and biochemical characterization of vesicular stomatitis virus and temperature-sensitive maturation mutants, Ph.D. thesis, University of Glasgow.Google Scholar
  21. Bussereau, F., and Flamand, A., 1978, Isolation and preliminary characterization of ts mutants of rabies virus, in: Negative Strand Viruses and the Host Cell ( B. W. J. Mahy and R. D. Barry, eds.), pp. 701–708, Academic Press, New York.Google Scholar
  22. Bussereau, F., Benejean, J., and Saghi, N., 1982, Isolation and study of temperature-sensitive mutants of rabies virus, J. Gen. Virol. 60: 153.PubMedCrossRefGoogle Scholar
  23. Byrd, A. D., Kennedy-Morrow, J., Marks, M. D., and Lesnaw, J. A., 1984, Functional relationships within the New Jersey serotype of vesicular stomatitis virus: Genetic and physiological comparisons of the Hazelhurst and Concan subtypes, J. Gen. Virol. 65: 1769.PubMedCrossRefGoogle Scholar
  24. Calafat, J., Janssen, H., Demant, P., Helgers, J., and Zavada, J., 1983, Specific selection of host cell glycoproteins during assembly of murine leukaemia virus and vesicular stomatitis virus: Presence of Thy-1 glycoprotein and absence of H-2, Pgp-1 and T-200 glycoproteins on the envelopes of these virus particles, J. Gen. Virol. 64: 1241.PubMedCrossRefGoogle Scholar
  25. Carroll, A. R., and Wagner, R. R., 1979, Role of the membrane protein in endogenous inhibition of in vitro transcription by vesicular stomatitis virus, J. Virol. 29: 134.PubMedGoogle Scholar
  26. Chan, J. C., East, J. L., Bowen, J. M., Massey, R., and Schochetman, G., 1982, Monoclonal and polyclonal antibody studies of VSV (hr MMTV) pseudotypes, Virology 120: 54.PubMedCrossRefGoogle Scholar
  27. Chatis, P. A., and Morrison, T. G., 1981, Mutational changes in the VSV glycoprotein affect the requirement of carbohydrate in morphogenesis, J. Virol. 37: 307.PubMedGoogle Scholar
  28. Chatterjee, P. K., Cervera, M. M., and Penman, S., 1984, Formation of vesicular stomatitis virus nucleocapsid from cytoskeletal framework-bound N protein: Possible model for structure assembly, Mol. Cell. Biol. 4: 2231.Google Scholar
  29. Chen, C.-Y., and Crouch, N. A., 1978, Shope fibroma virus-induced facilitation of vesicular stomatitis virus adsorption and replication in nonpermissive cells, Virology 85: 43.PubMedCrossRefGoogle Scholar
  30. Chen, S. S.-L., and Huang, A. S., 1986, Further characterization of the vesicular stomatitis virus temperature-sensitive 045 mutant: Intracellular conversion of the glycoprotein to a soluble form, J. Virol. 59: 210.PubMedGoogle Scholar
  31. Chou, P. Y., and Fasman, G. D., 1978, Prediction of the secondary structure of proteins from their amino acid sequence, Adv. Enzymol. 47: 45.PubMedGoogle Scholar
  32. Clapham, P., Nagy, K., and Weiss, R. A., 1984, Pseudotypes of human T-cell leukemia virus types 1 and 2: Neutralization by patients’ sera, Proc. Natl. Acad. Sci. U.S.A. 81: 2886.PubMedCrossRefGoogle Scholar
  33. Clark, H. F., 1978, Rabies viruses increase in virulence when propagated in neuroblastoma cell culture, Science 199: 1072.PubMedCrossRefGoogle Scholar
  34. Clark, H. F., and Koprowski, H., 1971, Isolation of ts conditional lethal mutants of “fixed” rabies virus, J. Virol. 7: 295.PubMedGoogle Scholar
  35. Clark, H. F., and Wiktor, T. J., 1974, Plasticity of phenotypic characters of rabies related viruses: Spontaneous variation in plaque morphology, virulence and temperature-sensitivity characters of serially propagated Lagos bat and Mokola viruses, J. Infect. Dis. 130: 608.PubMedCrossRefGoogle Scholar
  36. Clewley, J. P., Bishop, D. H. L., Kang, C Y., Coffin, J., Schnitzlein, W. M., Reichmann, M. E., and Shope, R. E., 1977, Oligonucleotide fingerprints of RNA species obtained from rhabdoviruses belonging to the vesicular stomatitis virus subgroup, J Virol. 23: 152.PubMedGoogle Scholar
  37. Contamine, D., 1973, Etude de mutants thermosensibles du virus Sigma, Mol. Gen. Genet. 124: 233.PubMedCrossRefGoogle Scholar
  38. Contamine, D., 1980, Two types of early mutants among temperature-sensitive mutants of Drosophila Sigma virus, Ann. Virol. (Inst. Pasteur) 131E: 113.Google Scholar
  39. Contamine, D., 1981, Role of the Drosophila genome in Sigma virus multiplication. I. Role of the ref (2) P gene; selection of host-adapted mutants at the non-permissive allele PP, Virology 114: 474.PubMedCrossRefGoogle Scholar
  40. Contamine, D., 1984, The late functions of Drosophila Sigma virus, Arch. Virol. 82: 31.PubMedCrossRefGoogle Scholar
  41. Cormack, D. V., Holloway, A. F., and Pringle, C. R., 1973, Temperature-sensitive mutants of vesicular stomatitis virus: Homology and nomenclature, J. Gen. Virol. 19: 295.PubMedCrossRefGoogle Scholar
  42. Cooper, P. D., and Bellett, A. J. D., 1959, A transmissible interfering component of vesicular stomatitis virus preparations, J. Gen. Microbiol. 21: 485.PubMedGoogle Scholar
  43. Coulon, P., and Contamine, D., 1982, Role of the Drosophila genome in sigma virus multiplication. II. Host spectrum variants among haP mutants, Virology 123: 381.PubMedCrossRefGoogle Scholar
  44. Coulon, P., Rollin, P. E., and Flamand, A., 1983, Molecular basis of rabies virus virulence. II. Identification of a site on the CVS glycoprotein associated with virulence, J. Gen. Virol., 64: 693.PubMedCrossRefGoogle Scholar
  45. Creager, R. S., Cardamone, J. J., and Youngner, J. S., 1981, Human lymphoblastoid cell lines of B- and T cell origin: Different responses to infection with vesicular stomatitis virus, Virology 111: 211.PubMedCrossRefGoogle Scholar
  46. Creager, R. S., Whitaker-Dowling, P., Frey, T. K., and Youngner, J. S., 1982, Varied response of human B-lymphoblastoid cell lines to infection with vesicular stomatitis virus, Virology 121: 414.PubMedCrossRefGoogle Scholar
  47. Davis, N. L., Amheiter, H., and Wertz, G. W., 1986, Vesicular stomatitis virus N and NS proteins form multiple complexes, J. Virol. 59: 751.Google Scholar
  48. Deutsch, V., 1975, Nongenetic complementation of group V temperature-sensitive mutants of vesicular stomatitis virus by UV-irradiated virus, J. Virol. 15: 788.Google Scholar
  49. Deutsch, V., 1976, Parental G protein reincorporation by a vesicular stomatitis virus temperature-sensitive mutants of complementation group V at nonpermissive temperature, Virology 69: 607.PubMedCrossRefGoogle Scholar
  50. Deutsch, V., Muel, B., and Brun, G., 1977, Action spectra for the rescue of temperature-sensitive mutants of vesicular stomatitis virus by ultraviolet-irradiated virions at non-permissive temperature, Virology 77: 294.PubMedCrossRefGoogle Scholar
  51. Deutsch, V., Muel, B., and Brun, G., 1979, Temperature-sensitive mutant is 082 of vesicular stomatitis virus. 1. Rescue at non-permissive temperature by UV-irradiated virus, Virology 93: 286–290.PubMedCrossRefGoogle Scholar
  52. Dietzschold, B., Wunner, W. H., Wiktor, T. J., Lopes, A. D., Lafon, M., Smith, C. L., and Koprowski, H., 1983, Characterization of an antigenic determinant of the glycoprotein that correlates with pathogenesis of rabies virus, Proc. Natl. Acad. Sci. U.S.A. 80: 70.PubMedCrossRefGoogle Scholar
  53. Doyle, M., and Holland, J. J., 1973, Prophylaxis and immunization in mice by use of virus-free defective T particles to protect against intracerebral infection by vesicular stomatitis virus, Proc. Natl. Acad. Sci. USA 70: 2105.PubMedCrossRefGoogle Scholar
  54. Duhamel, C., 1954, Etude de la sensibilité hereditaire a l’anhydride carbonique chez la Drosophile: Description de quelques variants du virus, C. R. Acad. Sci. 239: 1157.Google Scholar
  55. Evans, D., Pringle, C. R., and Szilagyi, J. J., 1979, Temperature-sensitive mutants of complementation group E vesicular stomatitis virus New Jersey serotype possess altered NS polypeptides, J. Virol. 31: 325.Google Scholar
  56. Flamand, A., 1970, Etude génétique du virus de la stomatite vesiculaire: Classement de mutants thermosensibles spontanées en groupes de complementation, J. Gen. Virol. 8: 187.PubMedCrossRefGoogle Scholar
  57. Flamand, A., 1980, Rhabdovirus genetics, in: Rhabdoviruses, Vol. II ( D. H. L. Bishop, ed.), pp. 115–140, CRC Press, Boca Raton, Florida.Google Scholar
  58. Flamand, A., and Delagneau, J. F., 1978, Transcriptional mapping of rabies virus in vivo, J. Virol. 28: 518.PubMedGoogle Scholar
  59. Flamand, A., and Pringle, C. R., 1971, The homologies of spontaneous and induced temperature-sensitive mutants of vesicular stomatitis virus isolated in chick embryo and BHK-21 cells, J. Gen. Virol. 11: 81.PubMedCrossRefGoogle Scholar
  60. Francoeur, A. M., Lam, T., and Stanners, C. P., 1980, PIF, a highly sensitive plaque assay for induction of interferon, Virology 105: 526.PubMedCrossRefGoogle Scholar
  61. Freeman, G. J., and Huang, A. S., 1981, Mapping temperature-sensitive mutants of vesicular stomatitis virus by RNA heteroduplex formation, J. Gen. Virol. 57: 103.PubMedCrossRefGoogle Scholar
  62. Frey, T. K., and Youngner, J. S., 1982, Novel phenotype of RNA synthesis expressed by vesicular stomatitis virus isolated from persistent infections, J. Virol. 44: 167.PubMedGoogle Scholar
  63. Frey, T. K., Frielle, D. W., and Youngner, J. S., 1981, Standard vesicular stomatitis virus is required for interferon induction in L cells by defective interfering particles, in: The Replication of Negative Strand Viruses ( D. H. L. Bishop and R. W. Compans, eds.), pp. 901–907, Elsevier/North-Holland, New York.Google Scholar
  64. Fultz, P. N., Shadduck, J. A., Kang, C. Y., and Streilein, J. W., 1981, Genetic analysis of resistance to lethal infections of vesicular stomatitis virus in Syrian hamsters, Infect. Immun. 32: 1007.PubMedGoogle Scholar
  65. Fultz, P. N., Shadduck, J. A., Kang, C. Y., and Streilein, J. W., 1982, Mediators of protection against lethal systemic vesicular stomatitis virus infection in hamsters: Defective interfering particles, polyinosinate—polycytidylate, and interferon, Infect. Immun. 37: 679.PubMedGoogle Scholar
  66. Gadkari, D. A., and Pringle, C. R., 1980a, Temperature-sensitive mutants of Chandipura virus. I. Inter-and intra-group complementation, J. Virol. 33: 100.PubMedGoogle Scholar
  67. Gadkari, D. A., and Pringle, C. R., 1980b, Temperature-sensitive mutants of Chandipura virus. II. Phenotype characteristics of the six complementation groups. J. Virol. 32: 107.Google Scholar
  68. Gallione, C. J., and Rose, J. K., 1983, Nucleotide sequence of a cDNA clone encoding the entire glycoprotein from the New Jersey serotype of vesicular stomatitis virus, J. Virol. 46: 162.PubMedGoogle Scholar
  69. Gallione, C. J., and Rose, J. K., 1985, A single amino acid substitution in a hydrophobic domain causes temperature sensitive cell-surface transport of a mutant viral glycoprotein, J. Virol. 54: 374.PubMedGoogle Scholar
  70. Gallione, C. J., Greene, J. R., Iverson, L. E., and Rose, J. K., 1981, Nucleotide sequences of the mRNA’s encoding the vesicular stomatitis virus N and NS proteins, J. Virol. 39: 529.Google Scholar
  71. Genty, N., 1975, Analysis of uridine incorporation in chicken embryo cells infected by vesicular stomatitis virus and its temperature sensitive mutants: Uridine transport, J. Virol. 15: 8.PubMedGoogle Scholar
  72. Gill, D. S., and Banerjee, A. K., 1985, Vesicular stomatitis virus NS proteins: Structural similarity without extensive sequence homology, J. Virol. 55: 60.PubMedGoogle Scholar
  73. Gillies, S., and Stollar, V., 1980, Generation of defective interfering particles of vesicular stomatitis virus in Aedes albopictus cells, Virology 107: 497.PubMedCrossRefGoogle Scholar
  74. Goldstein, L., 1949, Contribution a l’étude de la sensibilité hereditaire au gaz carbonique chez la Drosophile: Mise en évidence d’une forme nouvelle du génoide, Bull. Biol. Fr. Belg. 83: 177.Google Scholar
  75. Gopalakrishna, Y., and Lenard, J., 1985, Sequence alterations in the temperature-sensitive M-protein mutants (complementation group III) of vesicular stomatitis virus, J. Virol. 56: 655.PubMedGoogle Scholar
  76. Grinell, B., and Wagner, R. R., 1983, Comparative inhibition of cellular transcription by vesicular stomatitis virus serotypes New Jersey and Indiana: Role of each viral leader RNA, J. Virol. 48: 88.Google Scholar
  77. Grinnell, B. W., and Wagner, R. R., 1984, Nucleotide sequence and secondary structure of VSV leader RNA and homologous DNA involved in inhibition of DNA-dependent transcription, Cell 36: 533.PubMedCrossRefGoogle Scholar
  78. Guillemain, A., 1953, Découverte et localization d’une gene empêchant le multiplication du virus de la sensibilité hereditaire au CO2 chez D. M., C. R. Acad. Sci. 236: 1085.Google Scholar
  79. Hamilton, D. H., Moyer R. W., and Moyer, S. A., 1980, Characterization of the non-permissive infection of rabbit cornea cells by vesicular stomatitis virus, J. Gen. Virol. 49: 273.PubMedCrossRefGoogle Scholar
  80. Herman, R. C., 1986, Internal initiation of translation on the vesicular stomatitis virus phosphoprotein mRNA yields a second protein, J. Virol. 58: 797.PubMedGoogle Scholar
  81. Hill, V. M., Harmon, S. A., and Summers, D. F., 1986, Stimulation of vesicular stomatitis virus in vitro RNA synthesis by microtubule-associated protein, Proc. Natl. Acad. Sci. U.S.A. 83: 5410.PubMedCrossRefGoogle Scholar
  82. Holland, J. J., and Villareal, L. P., 1974, Persistent noncytocidal vesicular stomatitis virus infections mediated by defective T particles that suppress virion transcriptase, Proc. Natl. Acad. Sci. U.S.A. 71: 2956.PubMedCrossRefGoogle Scholar
  83. Holland, J. J., Villareal, L. P., and Breindl, M., 1976, Factors involved in the generation and replication of rhabdovirus defective T particles, J. Virol. 17: 805.PubMedGoogle Scholar
  84. Holland, J. J., Kennedy, S. I. T., Semler, B. L., Jones, C. L., Roux, L., and Grabau, E. A., 1980, Defective interfering RNA viruses and the host cell response, in: Comprehensive Virology, Vol. 16 ( H. Fraenkel-Conrat and R. R. Wagner, eds.), pp. 137–192, Plenum Press, New York.CrossRefGoogle Scholar
  85. Holland, J. J., Spindler, K. R., Horodyski, F. M., Grubau, E. A., Nichol, S. T., and VandePol, S., 1982, Rapid evolution of RNA genomes, Science 215: 1577.PubMedCrossRefGoogle Scholar
  86. Holloway, A. F., Wong, P. K. Y., and Cormack, D. V., 1970, Isolation and characterization of temperature-sensitive mutants of vesicular stomatitis virus, Virology 42: 917.PubMedCrossRefGoogle Scholar
  87. Horikami, S. M., and Moyer, S. A., 1982, Host range mutants of vesicular stomatitis virus defective in in vitro RNA methylation, Proc. Natl. Acad. Sci. U.S.A. 79: 7694.PubMedCrossRefGoogle Scholar
  88. Horikami, S. M., De Ferra, F., and Moyer, S. A., 1984, Characterization of the infections of permissive and non-permissive cells by host range mutants of vesicular stomatitis virus defective in RNA methylation, Virology 138: 1.PubMedCrossRefGoogle Scholar
  89. Horodyski, F. M., and Holland, J. J., 1980, Virus isolated from cells persistently infected with vesicular stomatitis virus show altered interations with defective interfering particles, J. Virol. 36: 627.PubMedGoogle Scholar
  90. Horodyski, F. M., and Holland, J. J., 1981, Continuing evolution of virus—DI particle interaction during VSV persistent infection, in: The Replication of Negative Strand Viruses ( D. H. L. Bishop and R. W. Compans, eds.), pp. 887–892, Elsevier/North-Holland, New York.Google Scholar
  91. Horodyski, F. M., and Holland, J. J., 1984, Reconstruction experiments demonstrating selective effects of defective interfering particles on mixed populations of vesicular stomatitis virus, J. Gen. Virol. 65: 819.PubMedCrossRefGoogle Scholar
  92. Horodyski, F. M., Nichol, S. T., Spindler, K. R., and Holland, J. J., 1983, Properties of DI particle-resistant mutants of vesicular stomatitis virus isolated from persistent infections and from undiluted passages, Cell 33: 801.PubMedCrossRefGoogle Scholar
  93. Hsu, C-H., and Kingsbury, D. W., 1985, Constitutively phosphorylated residues in the NS protein of vesicular stomatitis virus, J. Biol. Chem. 260: 8990.PubMedGoogle Scholar
  94. Huang, A. S., Palma, E L, Hewlett, M., and Roizman, B, 1974, Pseudotype formation between enveloped RNA and DNA viruses, Nature (London) 252: 743.Google Scholar
  95. Hudson, L. D., Condra, C., and Lazzarini, R. A., 1986, Cloning and expression of a viral phosphoprotein: Structure suggests vesicular stomatitis virus NS may function by mimicking an RNA template, J. Gen. Virol. 67: 1571.PubMedCrossRefGoogle Scholar
  96. Hughes, J. V., and Johnson, T. C., 1981, Alteration in peptide structure of vesicular stomatitis virus mutant and its central nervous system isolate, J. Gen. Virol. 53: 309.PubMedCrossRefGoogle Scholar
  97. Hunt, D. M., 1983, Vesicular stomatitis virus mutant with altered polyadenylic acid polymerase activity in vitro, J. Virol. 46: 788.PubMedGoogle Scholar
  98. Hunt, D. M., Emerson, S. U., and Wagner, R. R., 1976, RNA-negative temperature-sensitive mutants of vesicular stomatitis virus: L protein thermosensitivity accounts for transcriptase restriction of group I mutants, J. Virol. 18: 596.PubMedGoogle Scholar
  99. Hunt, D. M., Smith, E. F., and Buckley, D. W., 1984, Aberrant polyadenylation by a vesicular stomatitis virus mutant is due to an altered L protein, J. Virol. 52: 515.PubMedGoogle Scholar
  100. Huprikar, J., Rabinowitz, S. G., Dal Canto, M. C., and Rundell, M. K., 1986, Persistent infection of a temperature-sensitive G31 vesicular stomatitis virus mutant in neural and nonneural cells; biological and virological characteristics, J. Virol. 58: 493.PubMedGoogle Scholar
  101. Iverson, L. E., and Rose, J. K., 1981, Localized attenuation and discontinuous synthesis during vesicular stomatitis virus transcription, Cell 23: 477.PubMedCrossRefGoogle Scholar
  102. Johnson, G. P., and Herman, R. C., 1984, Non-permissive infection of lymphoblastoid cells by vesicular stomatitis virus. I. Synthesis and function of the viral transcripts, Virus Res. 1: 259.PubMedCrossRefGoogle Scholar
  103. Kang, C. Y., and Allen, R., 1978, Host function dependent induction of defective interfering particles of vesicular stomatitis virus, J. Virol. 25: 202.PubMedGoogle Scholar
  104. Kang, C. Y., Weide, L. G., and Tischfield, J. A., 1981, Suppression of vesicular stomatitis virus defective interfering particle generation by a functions) associated with human chromosome 16, J. Virol. 40: 946.PubMedGoogle Scholar
  105. Kawai, A., and Matsumoto, S., 1977, Interfering and noninterfering defective particles generated by a rabies small plaque variant virus, Virology 76: 60.PubMedCrossRefGoogle Scholar
  106. Keene, J. D., Schubert, M., and Lazzarini, R. A., 1979, Terminal sequences of vesicular stomatitis virus RNA are both complementary and conserved, J. Virol. 32: 167.PubMedGoogle Scholar
  107. Keene, J. D., Schubert, M., and Lazzarini, R. A., 1980, Intervening sequence between the leader region and the nucleocapsid gene of vesicular stomatitis virus RNA, J. Virol. 33: 789.PubMedGoogle Scholar
  108. Keene, J. D., Chien, I. M., and Lazzarini, R. A., 1981a, Vesicular stomatitis virus defective particle contains a muted internal leader RNA gene, Proc. Natl. Acad. Sci. U.S.A. 78: 2090.PubMedCrossRefGoogle Scholar
  109. Keene, J. D., Thornton, B. T., and Emerson, S. U., 1981b, Sequence-specific contacts between the RNA polymerase of vesicular stomatitis virus and the leader RNA gene, Proc. Natl. Acad. Sci. U.S.A. 78: 6191.PubMedCrossRefGoogle Scholar
  110. Kennedy-Morrow, J., and Lesnaw, J. A., 1984, Structural and functional characterization of the RNA-positive complementation groups, C and D, of the New Jersey serotype of vesicular stomatitis virus: Assignment of the M gene to the C complementation group, Virology 132: 38.PubMedCrossRefGoogle Scholar
  111. King, A. M. Q., McCahon, D., Slade, W. R., and Newman, J. W. I., 1982, Recombination in RNA, Cell 29: 921.PubMedCrossRefGoogle Scholar
  112. Knipe, D., Lodish, H. F., and Baltimore, D., 1977, Analysis of the defects of temperature-sensitive mutants of vesicular stomatitis virus: Intracellular degradation of specific viral proteins, J. Virol. 21: 1140.PubMedGoogle Scholar
  113. Kotwal, G. J., Capone J., Irving, R., Rhee, S. H., Bilan, P., Toneguzzo, F., Hotmann, T., and Ghosh, H. P., 1983, Viral membrane glycoproteins: Comparison of the amino terminal amino acid sequences of the precursor and mature glycoproteins of three serotypes of vesicular stomatitis virus, Virology 129: 1.PubMedCrossRefGoogle Scholar
  114. Kotwal, G. J., Buller, R. M. L., Wunner, W. H., Pringle, C. R., and Ghosh, H. P., 1986, Role of glycosylation in transport of vesicular stomatitis virus envelope glycoprotein. A new class of mutant defection in glycosylation and transport of G protein. J. Biol. Chem. 261; 8936.PubMedGoogle Scholar
  115. Kurath, G., and Leong, J. C., 1985, Characterization of infectious hematopoietic necrosis virus mRNA species reveals a nonvirion rhabdovirus protein, J. Virol. 53: 462.PubMedGoogle Scholar
  116. Kurath, G., Ahern, K. G., Pearson, G. D., and Leong, J. C., 1985, Molecular cloning of the six mRNA species of infectious hematopoietic necrosis virus, a fish rhabdovirus, and gene order determination by R loop mapping, J. Virol. 53: 469.PubMedGoogle Scholar
  117. Kurilla, M. G., and Keene, J. D., 1983, The leader RNA of vesicular stomatitis virus is bound by a cellular protein reactive with anti-La lupus antibodies, Cell 34: 837.PubMedCrossRefGoogle Scholar
  118. Kurilla, M. G., Piwnica-Worms, H., and Keene, J. D., 1982, Rapid and transient localization of the leader RNA of VSV in the nuclei of infected cells, Proc. Natl. Acad. Sci. U.S.A. 79: 5240.PubMedCrossRefGoogle Scholar
  119. Kurilla, M. G., Cabradilla, C. D., Holloway, B. P., and Keene, J. D., 1984, Nucleotide sequence and host La protein interactions of rabies virus leader RNA, J. Virol. 50: 773.PubMedGoogle Scholar
  120. Lafay, F., and Benejean, J., 1981, Temperature-sensitive mutants of vesicular stomatitis virus: Tryptic peptide maps of the proteins modified in complementation groups II and IV, Virology 111: 93.PubMedCrossRefGoogle Scholar
  121. Lafon, M., Wiktor, T. J., and Macfarlan, R. I., 1983, Antigenic sites on the CVS rabies virus glycoprotein: Analysis with monoclonal antibodies, J. Gen. Virol. 64: 843.PubMedCrossRefGoogle Scholar
  122. Lai, M. M. C., Baric, R. S., Makino, S., Keck, J. G., Egbert, J., Leibowitz, J. L., and Stohlman, S. A., 1985, Recombination between nonsegmented RNA genomes of murine corona-viruses, J. Virol. 56: 449.PubMedGoogle Scholar
  123. Lazzarini, R. A., Keene, J. D., and Schubert, M., 1981, The origin of defective interfering particles of the negative-strand RNA viruses, Cell 26: 145.PubMedCrossRefGoogle Scholar
  124. Lenard, J., Wilson, T., Mancarella, D., Reidler, J., Keller, P., and Elson, E., 1981, Interaction of mutant and wild type M protein of vesicular stomatitis virus with nucleocapsids and membranes, in: The Replication of Negative Strand Viruses ( D. H. L. Bishop and R. W. Compans, eds.), pp. 855–863, Elsevier/North-Holland, New York.Google Scholar
  125. Lentz, T. L., Wilson, P. T., Hawrot, E., and Speicher, D. W., 1984, Amino acid sequence similarity between rabies virus glycoprotein and snake venom curaremimetic neuro-toxins, Science 226: 847.PubMedCrossRefGoogle Scholar
  126. Lesnaw, J. A., Dickson, L. R., and Curry, R. H., 1979, Proposed replicative role of the NS polypeptide of vesicular stomatitis virus: Structural analysis of an electrophoretic variant, J. Virol. 31: 8.PubMedGoogle Scholar
  127. Levinson, W., Oppermann, H., Rubinstein, P., and Jackson, L., 1978, Host range restrictions of vesicular stomatitis virus on duck embryo cells, Virology 85: 612.PubMedCrossRefGoogle Scholar
  128. Little, L. M., Lanman, G., and Huang, A. S., 1983a, Immunoprecipitating human antigens associated with vesicular stomatitis virus grown in HeLa cells, Virology 129: 127.PubMedCrossRefGoogle Scholar
  129. Little, L. M., Zavada, J., Der, C. J., and Huang, A. S., 1983b, Identity of HeLa cell determinants acquired by vesicular stomatitis virus with a tumor antigen, Science 220: 1069.PubMedCrossRefGoogle Scholar
  130. Lodish, H. F., and Porter, M., 1981, Vesicular stomatitis virus mRNA and inhibition of translation of cellular mRNA—is there a P function in vesicular stomatitis virus?, J. Virol. 38: 504.PubMedGoogle Scholar
  131. Lodish, H. F., and Weiss, R. A., 1979, Selective isolation of mutants of vesicular stomatitis virus defective in production of the viral glycoprotein, J. Virol. 30: 177.PubMedGoogle Scholar
  132. Lodmell, D. L., and Chesebro, B., 1984, Murine resistance to street rabies virus: Genetic analysis by testing second-backcross progeny and verification of allelic resistance genes in SJL/J and CBA/J mice, J. Virol. 50: 359.PubMedGoogle Scholar
  133. Lodmell, D. L., and Ewalt, L. C., 1985, Pathogenesis of street rabies virus infections in resistant and susceptible strains of mice, J. Virol. 55: 788.PubMedGoogle Scholar
  134. Maack, C. A., and Penhoet, E. E., 1980, Biochemical characterization of the tsEl mutant of vesicular stomatitis virus (New Jersey), J. Biol. Chem. 255: 9249.PubMedGoogle Scholar
  135. Marcus, P., and Sekellick, M. J., 1980, Cell-killing by vesicular stomatitis virus: The prototype rhabdovirus, in: Rhabdoviruses, Vol. III ( D. H. L. Bishop, ed.), pp. 13–50, CRC Press, Boca Raton, Florida.Google Scholar
  136. Marks, D. M., Kennedy-Morrow, J., and Lesnaw, J. A., 1985, Assignment of the temperature-sensitive lesion in the replication mutant is Al of vesicular stomatitis virus to the N gene, J. Virol. 53: 44.Google Scholar
  137. Matsumoto, S., 1970, Rabies virus, Adv. Virus Res. 16: 257.PubMedCrossRefGoogle Scholar
  138. Matthews, R. E. F., 1982, Classification and nomenclature of viruses: Fourth report of the International Committee on Taxonomy of Viruses, Intervirology 17: 1.CrossRefGoogle Scholar
  139. McGeoch, D. J., 1979, Structure of the gene N: gene NS intercistronic junction in the genome of VSV, Cell 17: 673.PubMedCrossRefGoogle Scholar
  140. McGeoch, D. J., 1981, Structural analysis of animal virus genomes, J. Gen. Virol. 55: 1.PubMedCrossRefGoogle Scholar
  141. McGeoch, D. J., Dolan, A., and Pringle, C. R., 1980, Comparison of nucleotide sequences in the genomes of the New Jersey and Indiana serotypes of vesicular stomatitis virus, J. Virol. 33: 69.PubMedGoogle Scholar
  142. McGowan, J. J., Emerson, S. U., and Wagner, R. R., 1982, The plus strand leader RNA of vesicular stomatitis virus inhibits DNA-dependent transcription of adenovirus and SV40 genes in a soluble whole cell extract, Cell 28: 325.PubMedCrossRefGoogle Scholar
  143. Meier, E., Harmison, G. G., Keene, J. D., and Schubert, M., 1984, Sites of copy choice replication involved in generation of vesicular stomatitis virus defective interfering particle RNAs, J. Virol. 51: 515.PubMedGoogle Scholar
  144. Metzel, P. S., and Reichmann, M. E., 1981, Characterization of vesicular stomatitis virus mutants by partial proteolysis, J. Virol. 37: 248.PubMedGoogle Scholar
  145. Moreau, M.-C., 1974, Inhibition of a vesicular stomatitis virus mutant by rifampin, J. Virol. 14: 517.PubMedGoogle Scholar
  146. Morrongiello, M. P., and Simpson, R. W., 1979, Conditional lethal mutants of vesicular stomatitis virus. 4. RNA species detected in non-permissive cells infected with host restricted mutants, Virology 93: 506.PubMedCrossRefGoogle Scholar
  147. Moyer, S. A., Horikami, S. M., and Moyer, R. W., 1981, The effect of the host cell and heterologous viruses on VSV production, in: The Replication of Negative Strand Viruses ( D. H. L. Bishop and R. W. Compans, eds.), pp. 965–970, Elsevier/North-Holland, New York.Google Scholar
  148. Moyer, S. A., Baker, S. C., and Lessard, J. L., 1986, Tubulin: A factor necessary for the synthesis of both Sendai virus and vesicular stomatitis virus RNAs, Proc. Natl. Acad. Sci. U.S.A. 83: 5405.PubMedCrossRefGoogle Scholar
  149. Mudd, J. A., Leavitt, R. W., Kingsbury, D. T., and Holland, J. J., 1973, Natural selection of mutants of vesicular stomatitis virus by cultured cells of Drosophila melanogaster, J. Gen. Virol. 20: 341.PubMedCrossRefGoogle Scholar
  150. Nichol, S. T., O’Hara, P. J., Holland, J. J., and Perrault, J., 1984, Structure and origin of a novel class of defective interfering particle of vesicular stomatitis virus, Nucleic Acids Res. 12: 2775.PubMedCrossRefGoogle Scholar
  151. Nilsen, T. W., Wood, D. L., and Baglioni, C., 1981, Cross-linking of viral RNA by 4’aminomethyl-4,5’,8-trimethylpsoralen in HeLa cells infected with encephalomyocarditis virus and the tsG114 mutant of vesicular stomatitis virus, Virology 109: 82.PubMedCrossRefGoogle Scholar
  152. Nowakowski, M., Bloom, B. R., Ehrenfeld, E., and Summers, D. F., 1973, Restricted replication of vesicular stomatitis virus in human lymphoblastoid cells, J. Virol. 12: 1272.PubMedGoogle Scholar
  153. Obijeski, J. F., and Simpson, R. W., 1974, Conditional lethal mutants of vesicular stomatitis virus. II. Synthesis of virus-specific polypeptides in non-permissive cells infected with “RNA—” host restricted mutants, Virology 57: 369.PubMedCrossRefGoogle Scholar
  154. Ohanessian-Guillemain, A., 1959, Etude génétique du virus hereditaire de la Drosophile (Œ); Mutations et recombination génétique, Ann. Genet. 1: 59.Google Scholar
  155. O’Hara, P. J., Nichol, S. T., Horodyski, F. M., and Holland, J. J., 1984, Vesicular stomatitis virus defective interfering particles can contain extensive genomic sequence rearrangements and base substitutions, Cell 36: 915.PubMedCrossRefGoogle Scholar
  156. Ongradi, J., Cunningham, C., and Szilagyi, J. F., 1985a, The role of polypeptides L and NS in the transcription process of vesicular stomatitis virus New Jersey using the temperature-sensitive mutant tsEl, J. Gen. Virol. 66: 1011.PubMedCrossRefGoogle Scholar
  157. Ongradi, J., Cunningham, C., and Szilagyi, J. F., 1985b, Temperature sensitivity of the transcriptase of mutants tsBl and tsFl of vesicular stomatitis virus New Jersey is a consequence of mutation affecting polypeptide L, J. Gen. Virol. 66: 1507.PubMedCrossRefGoogle Scholar
  158. Pal, R., Grinnell, B. W., Snyder, R. M., and Wagner, R. R., 1986, Regulation of viral transcription by the matrix protein of vesicular stomatitis virus probed by monoclonal antibodies and temperature-sensitive mutants, J. Virol. 56: 386.Google Scholar
  159. Perrault, J., 1981, Origin and replication of defective interfering particles, Curr. Top. Micro biol. Immunol. 93: 151.CrossRefGoogle Scholar
  160. Perrault, J., and Leavitt, R. W., 1977, Inverted complementary terminal sequences in single-stranded RNAs and snap-back RNAs from vesicular stomatitis virus defective interfering particles, J. Gen. Virol. 38: 35.CrossRefGoogle Scholar
  161. Perrault, J., Lane, J. L., and McClure, M. A., 1981, In vitro transcription alterations in a vesicular stomatitis virus variant, in: The Replication of Negative Strand’Viruses ( D. H. L. Bishop and R. W. Compans, eds.), pp. 829–836, Elsevier/North-Holland, New York.Google Scholar
  162. Perrault, J., Clinton, G. M., and McClure, M. A., 1983, RNP template of vesicular stomatitis virus regulates transcription and replication functions, Cell 35: 175.PubMedCrossRefGoogle Scholar
  163. Pittman, D., 1965, Temperature-sensitive mutants of a rod-shaped RNA animal virus, Genetics 52: 468.Google Scholar
  164. Poirot, M. K., Schnitzlein, W. N., and Reichmann, M. E., 1985, The requirement of protein synthesis and VSV inhibition of host cell RNA synthesis, Virology 140: 91.PubMedCrossRefGoogle Scholar
  165. Polakova, K., Zavadova, Z., Zavada, J., and Russ, G., 1984, Monoclonal antibody against an antigen selectively assembled into vesicular stomatitis virus virions from HeLa cells, Int. J. Cancer 34: 91.PubMedCrossRefGoogle Scholar
  166. Portner, A., Webster, R. G., and Bean, W. H., 1980, Similar frequencies of antigenic variation in Sendai virus, vesicular stomatitis virus and influenza A virus, Virology 104: 235.PubMedCrossRefGoogle Scholar
  167. Pringle, C. R., 1970, Genetic characteristics of conditional lethal mutants of vesicular stomatitis virus induced by 5-fluorouracil, 5-azacytidine and ethyl methane sulphinate, J. Virol. 5: 559.PubMedGoogle Scholar
  168. Pringle, C. R., 1975, Conditional lethal mutants of vesicular stomatitis virus, Curr. Top. Mi cro bi ol. Immunol. 69: 85.CrossRefGoogle Scholar
  169. Pringle, C. R., 1977, Genetics of rhabdoviruses, in: Comprehensive Virology, Vol. 9 ( H. Fraenkel-Conrat and R. R. Wagner, eds.), pp. 239–290, Plenum Press, New York.Google Scholar
  170. Pringle, C. R., 1978, The tdCE and hrCE phenotypes: Host range mutants of vesicular stomatitis virus in which polymerase function is affected, Cell 15: 597.PubMedCrossRefGoogle Scholar
  171. Pringle, C. R., 1982, The genetics of vesiculoviruses, Arch. Virol. 72: 1.PubMedCrossRefGoogle Scholar
  172. Pringle, C. R., and Wunner, W. H., 1973, Genetic and physiological properties of temperature-sensitive mutants of Cocal virus, J. Virol. 12: 677.PubMedGoogle Scholar
  173. Pringle, C. R., and Wunner, W. H., 1975, A comparative study of the structure and function of the VSV genome, in: Negative Strand Viruses, Vol. 2 ( B. W. J. Mahy and R. D. Barry, eds.), pp. 707–723, Academic Press, New York.Google Scholar
  174. Pringle, C. R., and Szilagyi, J. F., 1980, Gene assignment and complementation group, in: Rhabdoviruses, Vol. II ( D. H. L. Bishop, ed.), pp. 141–161, CRC Press, Boca Raton, Florida.Google Scholar
  175. Pringle, C. R., Duncan, I. B., and Stevenson, M., 1971, Isolation and characterization of temperature-sensitive mutants of vesicular stomatitis virus, New Jersey serotype, J. Virol. 8: 836.PubMedGoogle Scholar
  176. Pringle, C. R., Devine, V., Wilkie, M., Preston, C. M., Dolan, A., and McGeoch, D. J., 1981, Enhanced mutability associated with a temperature-sensitive mutant of vesicular stomatitis virus, J. Virol. 39: 377.PubMedGoogle Scholar
  177. Printz, P., 1970, Adaptation du virus de la stomatite vesiculaire à Drosophila melanogaster, Ann. Inst. Pasteur Paris 119: 520.PubMedGoogle Scholar
  178. Rae, B. P., and Elliott, R. M., 1986a, Conservation of potential phosphorylation sites in the NS proteins of the New Jersey and Indiana serotypes of vesicular stomatitis virus, J. Gen. Virol. 67: 1351.PubMedCrossRefGoogle Scholar
  179. Rae, B. P., and Elliott, R. M., 1986b, Characterization of the mutations reponsible for the electrophoretic mobility differences in the NS proteins of vesicular stomatitis virus-New Jersey complementation group E mutants, J. Gen. Virol. 67: 2635.CrossRefGoogle Scholar
  180. Rasool, N., and Pringle, C. R., 1986, In vitro transcriptase deficiency of temperature-dependent host range mutants of Chandipura virus, J. Gen. Virol. 67: 851.PubMedCrossRefGoogle Scholar
  181. Reanney, D. C., 1982, The evolution of RNA viruses, Annu. Rev. Microbiol. 36:47.CrossRefGoogle Scholar
  182. Reanney, D. C., 1984, The molecular evolution of viruses, in: The Microbe 1984: I. Viruses B. W. J. Mahy and J. R. Pattison, eds.), pp. 175–196, Cambridge University Press.Google Scholar
  183. Reichmann, M. E., and Schnitzlein, W. M., 1979, Defective interfering particles of rhab-doviruses, Curr. Top. Microbiol. Immunol. 86:123.PubMedCrossRefGoogle Scholar
  184. Reichmann, M. E., Pringle, C. R., and Follett, E. A. C., 1971, Defective particles in BHK cells infected with temperature-sensitive mutants of vesicular stomatitis virus, J. Virol. 8: 154.PubMedGoogle Scholar
  185. Reichmann, M. E., Schnitzlein, W. M., Bishop, D. H. L., Lazzarini, R. A., Beatrice, S. T., and Wagner, R. R., 1978, Classification of the New Jersey serotype of vesicular stomatitis virus into two subtypes, J. Virol. 25: 446.PubMedGoogle Scholar
  186. Rettenmier, C. W., Dumont, R., and Baltimore, D., 1975, Screening procedure for complementation-dependent mutants of vesicular stomatitis virus, J. Virol. 15: 41.PubMedGoogle Scholar
  187. Richard-Molard, C., Blondel, D., Wyers, F., and Dezelee, S., 1984, Sigma virus: Growth in Drosophila melanogaster cell culture; purification; protein composition and localization, J. Gen. Virol. 65: 91.CrossRefGoogle Scholar
  188. Robertson, J. S., Etchison, J. R., and Summers, D. F., 1982, Comparison of the oligosaccharide structure of the glycoprotein of vesicular stomatitis virus and a thermolabile mutant t117, J. Gen. Virol. 58: 13.PubMedCrossRefGoogle Scholar
  189. Rose, J. K., 1980, Complete intergenic and flanking gene sequences from the genome of vesicular stomatitis virus, Cell 19: 415.PubMedCrossRefGoogle Scholar
  190. Rose, J. K., and Bergmann, J. E., 1983, Altered cytoplasmic domains affect intracellular transport of the vesicular stomatitis virus glycoprotein, Cell 34: 513.PubMedCrossRefGoogle Scholar
  191. Rose, J. K., and Gallione, C. J., 1981, Nucleotide sequences of the mRNA’s encoding the vesicular stomatitis virus G and M proteins determined from cDNA clones containing the complete coding regions, J. Virol. 39: 519.PubMedGoogle Scholar
  192. Rowlands, D., Grabau, E., Spindler, K., Jones, C., Semler, B., and Holland, J., 1980, Virus protein changes and RNA termini alterations evolving during persistent infection, Cell 19: 871.PubMedCrossRefGoogle Scholar
  193. Sarvar, N., and Stollar, V., 1977, Sindbis virus-induced cytopathic effect in clones of Aedes albopictus (Singh) cells, Virology 80: 390.CrossRefGoogle Scholar
  194. Schechmeister, I. L., Streckfuss, J., and St. John, R., 1967, Comparative pathogenicity of vesicular stomatitis virus and its plaque type mutants, Arch. Gesamte Virusforsch. 39: 203.Google Scholar
  195. Schlegel, R., and Wade, M., 1985, Biologically active peptides of the vesicular stomatitis virus glycoprotein, J. Virol. 53: 319.PubMedGoogle Scholar
  196. Schlesinger, S., Malter, C., and Schlesinger, M. J., 1984, The formation of vesicular stomatitis virus (San Juan strain) becomes temperature-sensitive when glucose residues are re- tained as the oligosaccharides of the glycoproteins, J. Biol. Chem. 259: 7597.PubMedGoogle Scholar
  197. Schnitzlein, W. M., and Reichmann, M. E., 1985, Characterization of New Jersey vesicular stomatitis virus isolates from horses and black flies during the 1982 outbreak in Colorado, Virology 142: 426.PubMedCrossRefGoogle Scholar
  198. Schubert, M., Keene, J. D., Herman, R. C., and Lazzarini, R. A., 1980, Site of the vesicular stomatitis virus genome specifying polyadenylation and the end of the L gene mRNA, J. Virol. 34: 550.PubMedGoogle Scholar
  199. Schubert, M., Harmison, G. G., and Meier, E., 1984, Primary structure of the vesicular stomatitis virus polymerase (L) gene: Evidence for a high frequency of mutations, J. Virol. 51: 505.PubMedGoogle Scholar
  200. Seif, I., Coulon, P., Rollin, P. E., and Flamand, A., 1985, Rabies virulence: Effect on pathogenicity and sequence characterization of rabies virus mutations affecting antigenic site III of the glycoprotein, J. Virol. 53: 926.PubMedGoogle Scholar
  201. Sekellick, M. J., and Marcus, P., 1980, Persistent infection of rhabdoviruses, in: Rhabdoviruses, Vol. III ( D. H. L. Bishop, ed.), pp. 67–98, CRC Press, Boca Raton, Florida.Google Scholar
  202. Selimow, M. A., and Nikotina, L. F., 1970, The “rct 40” marker of fixed rabies virus, Vopr. Virusol. 15: 161.Google Scholar
  203. Simpson, R. W., and Obijeski, J. F., 1974, Conditional lethal mutants of vesicular stomatitis virus. I. Phenotypic characterization of single and double mutants exhibiting host restriction and temperature sensitivity, Virology 57: 357.PubMedCrossRefGoogle Scholar
  204. Simpson, R. W., Obijeski, J. F., and Morrongiello, M. P., 1979, Conditional lethal mutants of vesicular stomatitis virus. 3. Host range properties, interfering capacity and complementation patterns of specific hr mutants, Virology 93: 493.PubMedCrossRefGoogle Scholar
  205. Spindler, K. R., Horodyski, F. M., and Holland, J. J., 1982, High multiplicities of infection favor rapid and random evolution of vesicular stomatitis virus, Virology 119: 96.PubMedCrossRefGoogle Scholar
  206. Stanners, C. P., Francoeur, A. M., and Lam, T., 1977, Analysis of a VSV mutant with attenuated cytopathogenicity: Mutation in viral function, P, for inhibition of protein synthesis, Cell 11: 273.PubMedCrossRefGoogle Scholar
  207. Storey, D. G., and Yong Kang, C., 1985, Vesicular stomatitis virus-infected cells from which the intracellular pool of functional M proteins is reduced in the presence of G protein, J. Virol. 53: 374.PubMedGoogle Scholar
  208. Szilagyi, J. F., and Pringle, C. R., 1975, Virion transcriptase activity differences in host range mutants of vesicular stomatitis virus, J. Virol. 16: 927.PubMedGoogle Scholar
  209. Szilagyi, J. F., and Pringle, C. R., 1979, Effect of temperature-sensitive mutation on the RNA transcriptase activity of vesicular stomatitis virus New Jersey, J. Virol. 30: 692.PubMedGoogle Scholar
  210. Szilagyi, J. F., Pringle, C. R., and Macpherson, T. M., 1977, Temperature-dependent host range mutation in vesicular stomatitis virus affecting polypeptide L, J. Virol. 22: 381.PubMedGoogle Scholar
  211. Templeton, J. W., Holmberg, C., Garber, T., and Sharp, R. M., 1986, Genetic control of serum-neutralizing-antibody response to rabies vaccination and survival after a rabies challenge infection in mice, J. Virol. 59: 98.PubMedGoogle Scholar
  212. Teninges, D., Contamine, D., and Brun, G., 1980, Drosophila Sigma virus, in: Rhabdovi- ruses, Vol. III ( D. H. L. Bishop, ed.), pp. 113–134, CRC Press, Boca Raton, Florida.Google Scholar
  213. Thacore, H. R., and Youngner, J. S., 1975, Abortive infection of a rabbit cornea cell line by vesicular stomatitis virus: Conversion to productive infection by superinfection with vaccinia virus, J. Virol. 16: 322.PubMedGoogle Scholar
  214. Tordo, N., Poch, O., Ermine, A., Keith, G., and Rougeon, F., 1986, Walking along the rabies virus genome: Is the large G—L intergenic region a remnant gene? Proc. Natl. Acad. Sci. U.S.A. 83: 3914.PubMedCrossRefGoogle Scholar
  215. Unger, J. T., and Reichmann, M. E., 1973, RNA synthesis in temperature sensitive mutants of vesicular stomatitis virus, J. Virol. 12: 570.PubMedGoogle Scholar
  216. Vigier, P., 1966, Contribution a l’étude de l’mutabilité génétique du virus de la Drosophile, Ann. Genet. 9: 5.Google Scholar
  217. Villareal, L. P., Breindl, M., and Holland, J. J., 1976, Determination of molar ratios of vesicular stomatitis virus induced RNA species in BHK-21 cells, Biochemistry 15: 1663.CrossRefGoogle Scholar
  218. Weck, P. K., and Wagner, R. R., 1979, Inhibition of RNA synthesis in mouse myeloma cells infected with vesicular stomatitis virus, J. Virol. 25: 770.Google Scholar
  219. Weck, P. K., Carroll, A. R., Shattuck, D. M. and Wagner, R. R., 1979, Use of UV irradiation to identify the genetic information of vesicular stomatitis virus responsible for shutting off cellular RNA synthesis, J. Virol. 30: 746.PubMedGoogle Scholar
  220. Weiss, R. A., and Bennett, P. L. P., 1980, Assembly of membrane glycoproteins studied by phenotypic mixing between mutants of vesicular stomatitis virus and retroviruses, Virology 100: 252.PubMedCrossRefGoogle Scholar
  221. Weiss, R. A., Boettiger, D., and Murphy, H. M., 1977, Pseudotypes of avian sarcoma viruses with the envelope properties of vesicular stomatitis virus, Virology 76: 808.PubMedCrossRefGoogle Scholar
  222. Wertz, G. W., 1978, Isolation of possible replicative intermediate structures from vesicular stomatitis virus infected cells, Virology 85: 271.PubMedCrossRefGoogle Scholar
  223. Wertz, G. W., and Levine, M., 1973, RNA synthesis of vesicular stomatitis virus and a small plaque mutant: Effects of cycloheximide, J. Virol. 12: 253.PubMedGoogle Scholar
  224. White, B. T., and McGeoch, D. J., 1985, Suppressible amber mutants of vesicular stomatitis virus Indiana serotype, Virus Res. (Suppl. 1: 27.Google Scholar
  225. Wilson, T., and Lenard, J., 1981, Interaction of wild type and mutant M protein of vesicular stomatitis virus with nucleocapside in vitro, Biochemistry 20: 1349.PubMedCrossRefGoogle Scholar
  226. Wilusz, J., Youngner, J. S., and Keene, J. D., 1985, Base mutations in the terminal noncoding regions of the genome of vesicular stomatitis virus isolated from persistent infections of L cells, Virology 140: 249.PubMedCrossRefGoogle Scholar
  227. Wong, P. K. Y., Holloway, A. F., and Cormack, D. V., 1972, Characterization of three complementation groups of vesicular stomatitis virus, Virology 50: 829.PubMedCrossRefGoogle Scholar
  228. Woodgett, C., and Rose, J. K., 1986, Amino-terminal mutation of the vesicular stomatitis virus glycoprotein does not affect its fusion activity, J. Virol. 59: 486.PubMedGoogle Scholar
  229. Wu, F. S., and Lucas-Lenard, J. M., 1980, Inhibition of RNA accumulation in mouse L cells infected with vesicular stomatitis virus requires viral ribonucleic acid transcription, Biochemistry 19: 804.PubMedCrossRefGoogle Scholar
  230. Wunner, W. H., Dietzschold, B., Smith, C. L., Lafon, M., and Golub, E., 1985, Antigenic variants of CVS rabies virus with altered glycosylation sites, Virology 140: 1.PubMedCrossRefGoogle Scholar
  231. Yelverton, E., Norton, S., Obijeski, J. F., and Goeddel, D. V., 1983, Rabies virus glycoprotein analogs: Biosynthesis in Escherichia coli, Science 219: 614.PubMedCrossRefGoogle Scholar
  232. Young, J. F., Taussig, R., Aaronson, R. P., and Palese, P., 1981, Advantages and limitations of the oligonucleotide mapping technique for the analysis of viral RNAs, in: Replication of Negative Strand Viruses ( D. H. L. Bishop and R. W. Compans, eds.), pp. 209–219, Elsevier/North-Holland, New York.Google Scholar
  233. Youngner, J. S., and Quagliana, D. O., 1976, Temperature-sensitive mutants of vesicular stomatitis virus are conditionally defective particles that interfere with and are rescued by wild-type virus, J. Virol. 19: 102.PubMedGoogle Scholar
  234. Youngner, J. S., Dubovi, E. J., Quagliana, D. O., Kelly, M., and Preble, O. T., 1976, Role of temperature-sensitive mutants in persistent infections initiated with vesicular stomatitis virus, J. Virol. 19: 90.PubMedGoogle Scholar
  235. Zavada, J., 1972, VSV pseudotype particles with the coat of avian myeloblastosis virus, Nature (London) New Biol. 240: 122.Google Scholar
  236. Zavada, J., 1982, The pseudotype paradox, J. Gen. Virol. 63: 15.PubMedCrossRefGoogle Scholar
  237. Zavada, J., and Huang, A. S., 1984, Further characterization of proteins assembled by vesicular stomatitis virus from human tumour cells, Virology 138: 16.PubMedCrossRefGoogle Scholar
  238. Zavada, J., Cemy, L., Zavadova, Z., Bozonova, J., and Altstein, A. D., 1979, A rapid neutralization test for antibodies to bovine leukemia virus, with the use of rhabdovirus pseudotypes, J. Natl. Cancer Inst. 62: 95.PubMedGoogle Scholar
  239. Zavada, J., Russ, G., Zavadova, Z., and Sabo, A., 1983a, Vesicular stomatitis virus phenotypically mixed with retroviruses: An efficient detection method, Acta Virol. 27: 110.PubMedGoogle Scholar
  240. Zavada, J., Zavadova, Z., Russ, G., Polakova, K., Rajcani, J., Stend, J., and Loksa, J., 1983b, Human cell surface proteins selectively asembled into vesicular stomatitis virus virions, Virology 127: 345.PubMedCrossRefGoogle Scholar
  241. Zavadova, Z., and Zavada, J., 1980, Pseudotypes of vesicular stomatitis virus with coat antigen of bovine leukaemia virus—VSV/BLV): Antigenic surface mosaic and the roles of precipitating antibodies and polycations, Acta Virol. 24: 166.PubMedGoogle Scholar
  242. Zilberstein, A., Snider, M. D., Porter, M., and Lodish, H. F., 1980, Mutants of vesicular stomatitis virus blocked at different stages in maturation of the viral glycoprotein, Cell 21: 417.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Craig R. Pringle
    • 1
  1. 1.Department of Biological SciencesUniversity of WarwickCoventryEngland

Personalised recommendations