Advertisement

Rhabdovirus Genomes and Their Products

  • John Rose
  • Manfred Schubert
Part of the The Viruses book series (VIRS)

Abstract

Rhabdoviruses are relatively simple, membrane-enveloped viruses containing a single-stranded RNA genome. The genomic RNA is the negative sense—i.e., complementary to the messenger RNAs (mRNAs)—and is noninfectious. The virus particles must therefore contain an RNA-dependent RNA polymerase to generate the mRNAs (Baltimore et al., 1970). Rhabdoviruses have a bacilliform, bullet-, or cone-shaped morphology and are known to infect vertebrates, invertebrates, and plants. The composition of various rhabdoviruses has been reviewed by McSharry (1979). The virus particles contain a helical, nucleocapsid core composed of the genomic RNA and protein. Generally, three proteins termed N (nucleocapsid), NS (originally indicating nonstructural), and L (large) are found to be associated with the nucleocapsid. An additional matrix (M) protein lies within the membrane envelope, perhaps interacting both with the membrane and the nucleocapsid core. A single glycoprotein (G) species spans the membrane and forms the spikes on the surface of the virus particle.

Keywords

Rabies Virus Vesicular Stomatitis Virus Nucleocapsid Protein Infectious Hematopoietic Necrosis Virus Polymerase Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, G., and Banerjee, A. K., 1976, Sequential transcription of the genes of vesicular stomatitis virus, Proc. Natl. Acad. Sci. U.S.A. 73: 1504.PubMedCrossRefGoogle Scholar
  2. Abraham, G., Rhodes, D. P., and Banerjee, A. K., 1975, The 5’ terminal structure of the methylated mRNA synthesized in vitro by vesicular stomatitis virus, Cell 5: 51.PubMedCrossRefGoogle Scholar
  3. Arnheiter, H., Davis, N. L., Wertz, G., Schubert, M., and Lazzarini, R. A., 1985, Role of the nucleocapsid protein in regulating vesicular stomatitis virus RNA synthesis, Cell 41: 259.PubMedCrossRefGoogle Scholar
  4. Ball, L. A., and White, C. N., 1976, Order of transcription of genes of vesicular stomatitis virus, Proc. Natl. Acad. Sci. U.S.A. 73: 442.PubMedCrossRefGoogle Scholar
  5. Baltimore, D., Huang, A. S., and Stampfer, M., 1970, Ribonucleic acid synthesis of vesicual stomatitis virus. II. An RNA plymerase in the virion, Proc. Natl. Acad. Sci. U.S.A. 66: 572.PubMedCrossRefGoogle Scholar
  6. Banerjee, A. I., 1980, 5’ Terminal cap structure in eucaryotic messenger ribonucleic acids, Microbiol. Rev. 44: 175.Google Scholar
  7. Banerjee, A. K., and Rhodes, D. P., 1973, In vitro synthesis of RNA that contains polyadenylate by virion-associated RNA polymerase of vesicular stomatitis virus, Proc. Natl. Acad. Sci. U.S.A. 70: 3566.Google Scholar
  8. Banerjee, A. K., Abraham, G., and Colonno, R. J., 1977, Vesicular stomatitis virus: Mode of transcription, J. Gen. Virol. 34: 1.PubMedCrossRefGoogle Scholar
  9. Banerjee, A. K., Rhodes, D. P., and Gill, D. S., 1984, Complete nucleotide sequence of the mRNA coding for the N protein of vesicular stomatitis virus (New Jersey serotype), Virology 137: 432.PubMedGoogle Scholar
  10. Bell, J., and Prevec, L., 1985, Phosphorylation sites on phosphoprotein NS of vesicular stomatitis virus, J. Virol. 54: 697.PubMedGoogle Scholar
  11. Bell, J., Brown, E. G., Takayesu, D., and Prevec, L., 1984, Protein kinase activity associated with immunoprecipitates of the vesicular stomatitis virus phosphoprotein NS, Virology 132: 229.PubMedCrossRefGoogle Scholar
  12. Bergmann, J. E., Tokuyasu, K. T., and Singer, S. J., 1981, Passage of an integral membrane protein, the vesicular stomatitis virus glycoprotein, through the Golgi apparatus en route to the plasma membrane, Proc. Natl. Acad. Sci. U.S.A. 78: 1746.PubMedCrossRefGoogle Scholar
  13. Bishop, D. H. L., and Roy, P., 1971, Kinetics of RNA synthesis by vesicular stomatitis virus particles, J. Mol. Biol 57: 513.PubMedCrossRefGoogle Scholar
  14. Blumberg, B. M., and Kolakofsky, D., 1981, Intracellular vesicular stomatitis virus leader RNAs are found in nucleocapsid structures, J. Virol. 40: 568.PubMedGoogle Scholar
  15. Blumberg, B. M., Leppert, M., and Kolakofsky, D., 1981, Interaction of VSV leader RNA and nucleocapsid protein may control VSV genome replication, Cell 23: 837.PubMedCrossRefGoogle Scholar
  16. Blumberg, B. M., Giorgi, C., and Kolakofsky, D., 1983, N protein of vesicular stomatitis virus selectively encapsidates leader RNA in vitro, Cell 32: 559.Google Scholar
  17. Blumberg, B. M., Giorgi, C., Rose, K., and Kolakofsky, D. 1984, Preparation and analysis of the nucleocapsid proteins of VSV and Sendai virus and analysis of the Sendai virus leader-np gene region, J. Gen. Virol. 65: 769–779.PubMedCrossRefGoogle Scholar
  18. Carroll, A., and Wagner, R., 1979, Role of the membrane (M) protein in endogenous inhibition of in vitro transcription by vesicular stomatitis virus, J. Virol. 29: 134.Google Scholar
  19. Chatis, P. A., and Morrison, T. G., 1979, Vesicular stomatitis virus glycoprotein is anchored to intracellular membranes near its carboxyl end and is proteolytically cleaved at its amino terminus, J. Virol. 29: 957.Google Scholar
  20. Chatis, P. A., and Morrison, T. G., 1982, Characterization of the soluble glycoprotein released from VSV infected cells, J. Virol. 45: 80.Google Scholar
  21. Clinton, G. M., and Huang, A. S., 1981, Distribution of phosphoserine, phosphothreonine and phosphotyrosine in proteins of vesicular stomatitis virus, Virology 108: 510.PubMedCrossRefGoogle Scholar
  22. Clinton, G. M., Burge, B. W., and Huang, A. S., 1978a, Effects of phosphorylation and pH on the association of NS protein with vesicular stomatitis virus cores, J. Virol. 27: 340.PubMedGoogle Scholar
  23. Clinton, G., Little, S., Hagen, F., and Huang, A., 1978b, The matrix protein of VSV regulates transcription, Cell 15: 1455.PubMedCrossRefGoogle Scholar
  24. Cohen, G., Atkinson, P. and Summers, D., 1971, Interaction of VSV structural proteins with HeLa cell plasma membranes, Nature (London), 231: 121.CrossRefGoogle Scholar
  25. Colonno, R. J., and Banerjee, A. K., 1976, A unique RNA species involved in initiation of vesicular stomatitis virus RNA transcription in vitro, Cell 8: 197.PubMedCrossRefGoogle Scholar
  26. Colonno, R. J., and Banerjee, A. K., 1978a, Complete nucleotide sequence of the leader RNA synthesized in vitro by vesicular stomatitis virus, Cell 15: 93.PubMedCrossRefGoogle Scholar
  27. Colonno, R. J., and Banerjee, A. K., 1978b, Nucleotide sequence of the leader RNA of the New Jersey serotype of vesicular stomatitis virus, Nucleic Acids Res. 51: 4165.CrossRefGoogle Scholar
  28. Combard, A., and Printz-Ané, C., 1979, Inhibition of vesicular stomatitis virus transcriptase complex by the virion envelope protein, Biochem. Biophys. Res. Commun. 88: 117.PubMedCrossRefGoogle Scholar
  29. Crimmins, D. L., Mehard, W. B., and Schlesinger, S., 1983, Physical properties of a soluble form of the glycoprotein of vesicular stomatitis virus at neutral and acidic pH, Biochemistry 22:5790.Google Scholar
  30. De, B. P., and Banerjee, A. K., 1983, Specific binding of guanosine 5’-diphosphate with the NS protein of vesicular stomatitis virus, Biochem. Biophys. Res. Commun. 114: 138.PubMedCrossRefGoogle Scholar
  31. De, B. P., and Banerjee, A. K., 1984, Specific interactions of vesicular stomatitis virus L and NS proteins with heterologous genome ribonucleoprotein template lead to mRNA synthesis in vitro, J. Virol 51: 628.PubMedGoogle Scholar
  32. De, B. P., Thornton, G. B., Luk, D., and Banerjee, A. K., 1982, Purified matrix protein of vesicular stomatitis virus blocks viral transcription in vitro, Proc. Natl. Acad. Sci. U.S.A. 79: 7137.PubMedCrossRefGoogle Scholar
  33. Dietzschold, B., Wiktor, T., Wunner, W., and Varrichio, A., 1983, Chemical and immu-nological analysis of the rabies virus soluble glycoprotein, Virology 124: 330.PubMedCrossRefGoogle Scholar
  34. Doolittle, R. F., 1981, Similar amino acid sequences: Chance or common ancestry?, Science 214: 149.PubMedCrossRefGoogle Scholar
  35. Dubovi, E. J., and Wagner, R. R., 1977, Spatial relationships of the proteins of vesicular stomatitis virus: Induction of reversible oligomers by cleavable protein cross-linkers and oxidation, /. Virol. 22: 500.Google Scholar
  36. Ehrenfeld, E., and Summers, D. F., 1972, Adenylate-rich sequences in vesicular stomatitis virus messenger ribonucleic acids, J. Virol. 12: 683.Google Scholar
  37. Emerson, S. U., 1982, Reconstitution studies detect a single polymerase entry site on the vesicular stomatitis virus genome, Cell 31: 635.PubMedCrossRefGoogle Scholar
  38. Emerson, S. U., and Wagner, R. R., 1972, Dissociation and reconstitution of the transcriptase and template activities of vesicular stomatitis B and T virions, J. Virol. 10: 297.PubMedGoogle Scholar
  39. Emerson, S. U., and Yu, Y.-H., 1975, Both NS and L proteins are required for in vitro RNA synthesis by vesicular stomatitis virus, J. Virol. 15: 1348.PubMedGoogle Scholar
  40. Emerson, S. U., Dierks, P. M., and Parsons, J. T., 1977, In vitro synthesis of a unique RNA species by a T particle of vesicular stomatitis virus, /. Virol. 23: 708.Google Scholar
  41. Etchison, J., Robertson, J., and Summers, D., 1977, Partial structural analysis of the oligosaccharide moieties of the VSV glycoprotein by sequential and enzymatic degradation, Virology 78: 375.PubMedCrossRefGoogle Scholar
  42. Flamand, A., 1970, Etude génétique de la stomatite vesiculaire• Classement de mutants thermosensibles spontanées en groupes de complementation, J. Gen. Virol. 8: 187.PubMedCrossRefGoogle Scholar
  43. Flamand, A., and Delagneau, J. F., 1978, Transcriptional mapping of rabies virus in vivo, J. Virol. 28: 518.PubMedGoogle Scholar
  44. Florkiewicz, R., and Rose, J., 1984, A cell line expressing the VSV glycoprotein fuses at low pH, Science 225: 721.PubMedCrossRefGoogle Scholar
  45. Florkiewicz, R., Smith, A., Bergmann, J. E., and Rose, J. K., 1983, Isolation of stable mouse cell lines that express cell surface and secreted forms of the vesicular stomatitis virus glycoprotein, J. Cell Biol. 97: 1381.PubMedCrossRefGoogle Scholar
  46. Gallione, C. J., and Rose, J. K., 1983, Nucleotide sequence of a cDNA clone encoding the entire glycoprotein from the New Jersey serotype of vesicular stomatitis virus, J. Virol. 46: 162.PubMedGoogle Scholar
  47. Gallione, C. J., and Rose, J. K., 1985, A single amino acid substitution in a hydrophobic domain causes temperature-sensitive cell surface transport of a mutant viral glycoprotein, J. Virol. 54: 374–382.PubMedGoogle Scholar
  48. Gallione, C. J., Greene, J. R., Iverson, L. E., and Rose, J. K., 1981, Nucleotide sequences of the mRNAs encoding the vesicular stomatitis virus N and NS proteins, J. Virol. 39: 529.Google Scholar
  49. Garreis-Wabnitz, C., and Kruppa, J., 1984, Intracellular appearance of a glycoprotein in VSVinfected BHK cells lacking the membrane-anchoring oligopeptide of the viral G-protein, Eur. Mol. Biol. Org. J. 3: 1469.Google Scholar
  50. Gibson, R. S., Schlesinger, and Kornfeld, S., 1979, The nonglycosylated glycoprotein of vesicular stomatitis virus is temperature-sensitive and undergoes intracellular aggregation at elevated temperatures, J. Biol. Chem. 254: 3600–3607.Google Scholar
  51. Gill, D. S., and Banerjee, A. K., 1985, Vesicular stomatitis virus NS proteins: Structural similarity without extensive sequence homology, J. Virol. 55: 60.PubMedGoogle Scholar
  52. Giorgi, C., Blumberg, B., and Kolakofsky, D., 1983, Sequence determination of the ( + ) leader RNA regions of the VSV Chandipura, Cocal and Piry serotype genomes, J. Virol. 46: 125.PubMedGoogle Scholar
  53. Gluzman, Y., 1981, SV40-transformed simian cells support the replication of early SV40 mutants, Cell 23: 175.PubMedCrossRefGoogle Scholar
  54. Grinnell, B., and Wagner, R. R., 1983, Comparative inhibition of cellular transcription by vesicular stomatitis virus serotypes New Jersey and Indiana. Role of each viral leader RNA, J. Virol. 48: 88.PubMedGoogle Scholar
  55. Grinnell, B., and Wagner, R. R., 1984, Nucleotide sequence and secondary structure of vesicular stomatitis leader RNA and homologous DNA involved in inhibition of DNA-dependent transcription, Cell 36: 533.PubMedCrossRefGoogle Scholar
  56. Gupta, K. C., and Kingsbury, D. W., 1984, Complete sequences of the intergenic and mRNA start signals in the Sendai virus genome: Homologies with the genome of vesicular stomatitis virus, Nucleic Acids Res. 12: 3829.PubMedCrossRefGoogle Scholar
  57. Gupta, K. C., and Roy, P., 1980, Alternate capping mechanisms for transcription of spring viremia of carp virus: Evidence for independent mRNA initiation, J. Virol. 33: 292.PubMedGoogle Scholar
  58. Herman, R. C., Adler, S., Lazzarini, R. A., Colonno, R. J., Banerjee, A. K., and Westphal, H., 1978, Intervening polyadenylate sequences in RNA transcripts of vesicular stomatitis virus, Cell 15: 587.PubMedCrossRefGoogle Scholar
  59. Herman, R. C., Schubert, M., Keene, J. D., and Lazzarini, R. A., 1980, Polycistronic vesicular stomatitis virus RNA transcripts, Proc. Natl. Acad. Sci. U.S.A. 77: 4662.PubMedCrossRefGoogle Scholar
  60. Horikami, S. M., and Moyer, S. A., 1982, Host range mutants of vesicular stomatitis virus defective in in vitro RNA methylation, Proc. Natl. Acad. Sci. U.S.A. 79: 7694.PubMedCrossRefGoogle Scholar
  61. Hsu, C.-H., Morgan, E. M., and Kingsbury, D. W., 1982, Site-specific phosphorylation regulates the transcriptive activity of vesicular stomatitis virus NS protein, J. Virol. 43: 104.PubMedGoogle Scholar
  62. Huang, A. S., and Manders, E. K., 1972, Ribonucleic acid synthesis of vesicular stomatitis virus. IV. Transcription by standard virus in the presence of defective interfering particles, J. Virol. 9: 909.PubMedGoogle Scholar
  63. Hubbard, S. C., and Ivatt, R. J., 1981, Synthesis and processing of asparagine-linked oligosaccharides, Annu. Rev. Biochem. 50: 555.PubMedCrossRefGoogle Scholar
  64. Hunt, D. M., 1983, Vesicular stomatitis virus mutant with altered polyadenylic acid polymerase activity in vitro, J. Virol. 46: 788.PubMedGoogle Scholar
  65. Hunt, D. M., Emerson, S. U., and Wagner, R. R., 1976, RNA temperature-sensitive mutants of vesicular stomatitis virus: L-protein thermosensitivity accounts for transcriptase restriction of group I mutants, J. Virol. 18: 596.PubMedGoogle Scholar
  66. Hunt, D. M., Smith, E. F., and Buckley, D. W., 1984, Aberrant polyadenylation by a vesicular stomatitis virus mutant is due to an altered L protein, J. Virol. 52: 515.PubMedGoogle Scholar
  67. Imblum, R. L., and Wagner, R. R., 1974, Protein kinase and phosphoproteins of vesicular stomatitis virus, J. Virol. 13: 113.PubMedGoogle Scholar
  68. Imblum, R. L., and Wagner, R. R., 1975, Inhibition of viral transcriptase by immunoglobulin directed against the nucleocapsid NS protein of vesicular stomatitis virus, J. Virol. 15: 1357.PubMedGoogle Scholar
  69. Irving, R. A., and Ghosh, H. P., 1982, Shedding of vesicular stomatitis virus soluble glycoprotein by removal of carboxyl-terminal peptide, J. Virol. 42: 322.PubMedGoogle Scholar
  70. Irving, R. A., Toneguzzo, F., Rhee, S. H., Hofmann, T., and Ghosh, H. P., 1979, Synthesis and assembly of membrane glycoproteins: Presence of leader peptide in nonglycosylated precursor of membrane glycoprotein of vesicular stomatitis virus, Proc. Natl. Acad. Sci. U.S.A. 76: 570.PubMedCrossRefGoogle Scholar
  71. Isaac, C. L., and Keene, J. D., 1982, RNA polymerase associated interactions near template promoter sequences of defective interfering particles of vesicular stomatitis virus, J. Virol. 43: 241.PubMedGoogle Scholar
  72. Iverson, L. E., and Rose, J. K., 1981, Localized attenuation and discontinuous synthesis during vesicular stomatitis virus transcription, Cell 23: 477.PubMedCrossRefGoogle Scholar
  73. Iverson, L., E., and Rose, J. K., 1982, Sequential synthesis of 5’ proximal vesicular stomatitis virus mRNA sequences, J. Virol. 44: 356.Google Scholar
  74. Kang, C. Y., and Prevec, L., 1970, Proteins of vesicular stomatitis virus II Immunological comparisons of viral antigens, J. Virol. 6: 20.PubMedGoogle Scholar
  75. Keene, J. D., Schubert, M., Lazzarini, R. A., and Rosenberg, M., 1978, Nucleotide sequence homology at the 3’ termini of RNA from vesicular stomatitis virus and its defective interfering particles, Proc. Natl. Acad. Sci. U.S.A. 75: 3225.PubMedCrossRefGoogle Scholar
  76. Keene, J. D., Schubert, M., and Lazzarini, R. A., 1979, Terminal sequences of vesicular stomatitis virus RNA are both complementary and conserved, J. Virol. 32: 167.PubMedGoogle Scholar
  77. Keene, J. D., Schubert, M., and Lazzarini, R. A., 1980, Intervening sequences between the leader region and the nucleocapsid gene of vesicular stomatitis virus RNA, J. Virol. 33: 789.PubMedGoogle Scholar
  78. Keene, J. D., Chien, I. M., and Lazzarini, R. A., 198la, Vesicular stomatitis virus defective interfering particle containing a muted internal leader RNA gene, Proc. Natl. Acad. Sci. U.S.A. 78: 2090.Google Scholar
  79. Keene, J. D., Thornton, B. J., and Emerson, S. U., 198 lb, Sequence-specific contacts between the RNA polymerase of vesicular stomatitis virus and the leader RNA gene, Proc. Natl. Acad. Sci. U.S.A. 78: 6191.Google Scholar
  80. Kelley, J. M., Emerson, S. U., and Wagner, R. R., 1972, The glycoprotein of vesicular stomatitis virus is the antigen that gives rise to and reacts with neutralizing antibody, J. Virol. 10 :1231.Google Scholar
  81. Kingsbury, D. W., 1974, The molecular biology and paramyxoviruses, Med. Microbiol. Immunol. 160: 73.PubMedCrossRefGoogle Scholar
  82. Kingsbury, D. W., Hsu, C.-H., and Morgan, E. M., 1981, A role for NS protein phosphorylation in vesicular stomatitis virus transcription, in: The Replication of Negative Strand Viruses ( D. H. Bishop and R. W. Compans, eds.), p. 821, Elsevier/North-Holland, New York.Google Scholar
  83. Kingsford, L., and Emerson, S. U., 1980, Transcriptional activities of different phosphorylated species of NS protein purified from vesicular stomatitis virions and cytoplasm of infected cells, J. Virol. 33: 1097.PubMedGoogle Scholar
  84. Knipe, D., Baltimore, D., and Lodish, H., 1977a, Separate pathways of maturation of the major structural proteins of vesicular stomatitis virus, J. Virol. 21: 1128.PubMedGoogle Scholar
  85. Knipe, D., Baltimore, D., and Lodish, H., 1977b, Maturation of viral proteins in cells infected with temperature-sensitive mutants of vesicular stomatitis virus, J. Virol. 21: 1149.PubMedGoogle Scholar
  86. Kolakofsky, D., 1982, Isolation of vesicular stomatitis virus defective interfering genomes with different amounts of 5’ terminal complementarity, J. Virol. 41: 566.PubMedGoogle Scholar
  87. Kurath, G., and Leong, J. C., 1985, Characterization of infectious hematopoietic necrosis virus mRNA species reveals a nonvirion rhabdovirus protein, J. Virol. 53: 462.PubMedGoogle Scholar
  88. Kurath, G., Ahern, K. G., Pearson, G. C., and Leong, J. C., 1985, Molecular cloning of the six mRNA species of infectious hematopoietic necrosis virus, a fish rhabdovirus, and gene order determination by R-loop mapping, J. Virol. 53: 469.PubMedGoogle Scholar
  89. Kurilla, M. G., and Keene, J. D., 1983, The leader RNA of vesicular stomatitis virus is bound by a cellular protein reactive with anti-La lupus antibodies, Cell 34: 837.PubMedCrossRefGoogle Scholar
  90. Kurilla, M. G., Pinwica-Worms, H., and Keene, J. D., 1982, Rapid and transient localization of the leader RNA of VSV in the nuclei of infected cells, Proc. Natl. Acad. Sci. U.S.A. 79: 5240.PubMedCrossRefGoogle Scholar
  91. Kurilla, M. G., Cabradilla, C. D., Holloway, B. P., and Keene, J. D., 1984, Nucleotide sequence and host La protein interactions of rabies virus leader RNA, J. Virol. 50: 773.PubMedGoogle Scholar
  92. Lazzarini, R. A., Keene, J. D., and Schubert, M., 1981, The origins of defective interfering particles of the negative-strand RNA viruses, Cell 26: 145.PubMedCrossRefGoogle Scholar
  93. Leavitt, R., Schlesinger, S., and Kornfeld, S., 1977a, Tunicamycin inhibits glycosylation and multiplication of Sindbis and vesicular stomatitis viruses, J. Virol. 21: 375–385.PubMedGoogle Scholar
  94. Leavitt, R., Schlesinger, S., and Kornfeld, S., 1977b, Impaired intracellular migration and altered solubility of nonglycosylated glycoproteins of vesicular stomatitis virus and Sindbis virus, J. Biol. Chem. 252: 9018–9023.PubMedGoogle Scholar
  95. Leppert, M., and Kolakofsky, D., 1980, Effect of defective interfering particles on plus-and minus-strand leader RNAs in vesicular stomatitis virus-infected cells, J. Virol. 35: 704.PubMedGoogle Scholar
  96. Leppert, M., Rittenhouse, L., Perrault, J, Summers, D. F., and Kolakofsky, D., 1979, Plus and minus strand leader RNAs in negative strand virus-infected cells, Cell 18: 235.CrossRefGoogle Scholar
  97. Lingappa, V. R., Katz, F. N., Lodish, H. F., and Blobel, G., 1978, A signal sequence for insertion of a transmembrane glycoprotein, J. Biol. Chem. 253: 8867.Google Scholar
  98. Little, S. P., and Huang, A. S., 1977, Synthesis and distribution of vesicular stomatitis virus-specific polypeptides in the absence of progeny production, Virology 81: 37.PubMedCrossRefGoogle Scholar
  99. Machamer, C., Florkiewicz, R., and Rose, J., 1985, A single N-linked oligosaccharide at either of the two normal sites promotes cell surface transport of the vesicular stomatitis virus glycoprotein, Mol. Cell. Biol. 5: 3074.PubMedGoogle Scholar
  100. Magee, A. I., Koyama, A. H., Malfer, C., Wen, D., and Schlesinger, M., 1984, Release of fatty acids from viral glycoproteins, Biochim. Biophys. Acta 798: 156–166.PubMedCrossRefGoogle Scholar
  101. Marcus, P. I., and Sekellick, M. J., 1975, Cell killing by viruses. II. Cell killing by vesicular stomatitis virus: A requirement for virion-derived transcription, Virology, 63: 176.PubMedCrossRefGoogle Scholar
  102. Martinet, C., Combard, A., Printz-Ané, C., and Printz, P., 1979, Envelope proteins and replication of vesicular stomatitis virus: In vivo effects of RNA’ temperature sensitive mutations on viral RNA synthesis, J. Virol. 29: 123.PubMedGoogle Scholar
  103. Masters, P. S., and Samuel, C. E., 1984, Detection of in vivo synthesis of polycistronic mRNAs of vesicular stomatitis virus, Virology 134: 277.PubMedCrossRefGoogle Scholar
  104. McGeoch, D. J., 1979, Structure of the gene N:gene NS intercistronic junction in the genome of the vesicular stomatitis virus, Cell 17: 3199.CrossRefGoogle Scholar
  105. McGeoch, D. J., and Dolan, A., 1979, Sequence of 200 nucleotides at the 3’ terminus of the RNA genome of vesicular stomatitis virus, Nucleic Acids Res. 6: 3199.Google Scholar
  106. McGowan, J. J., and Wagner, R. R., 1981, Inhibition of cellular DNA synthesis by vesicular stomatitis virus, J. Virol. 38: 356.PubMedGoogle Scholar
  107. McGowan, J. J., Emerson, S. U., and Wagner, R. R., 1982, The plus-strand leader RNA of VSV inhibits DNA-dependent transcription of adenovirus and SV40 genes in a soluble whole-cell extract, Cell 28: 325.PubMedCrossRefGoogle Scholar
  108. McSharry, J. J., 1979, The lipid envelope and chemical composition of Rhabdoviruses, in: The Rhabdoviruses, Vol. I (D. H. L. Bishop, ed.), p. 107, CRC Press, Boca Raton, Florida. Meier, E., Harmison, G. G., Keene, J. D., and Schubert, M., 1984, Sites of copy choice replication involved in generation of vesicular stomatitis virus defective-interfering particle RNAs, J. Virol. 51: 515.Google Scholar
  109. Mellon, M. G., and Emerson, S. U., 1978, Rebinding of transcriptase component (L and NS proteins) to the nucleocapsid template of vesicular stomatitis virus, J. Virol. 27: 560.PubMedGoogle Scholar
  110. Morgan, E. M., and Kingsbury, D. W., 1981, Association of the transcriptase and RNA methyltransferase activities of vesicular stomatitis virus with the L protein, in: The Replication of Negative Strand Viruses, ( D. H. L. Bishop and R. W. Compans, eds.), pp. 815–820, Elsevier/North-Holland, New York.Google Scholar
  111. Morrison, T. G., McQuain, C. O., and Simpson, D., 1978, Assembly of viral membranes: Maturation of the vesicular stomatitis virus glycoprotein in the presence of tunicamycin, J. Virol. 28: 368.PubMedGoogle Scholar
  112. Moyer, S. A., and Gatchell, S. H., 1979, Intracellular events in the replication of defective interfering particles of vesicular stomatitis virus, Virology 92: 168.PubMedCrossRefGoogle Scholar
  113. Moyer, S. A., and Summers, D. F., 1974, Phosphorylation of VSV in vivo and in vitro, J. Virol. 13: 455.PubMedGoogle Scholar
  114. Moyer, S. A., Abraham, G., Adler, R., and Banerjee, A. K., 1975, Methylated and blocked 5’ termini in vesicular stomatitis virus in vivo mRNAs, Cell 5: 59.PubMedCrossRefGoogle Scholar
  115. Naito, S., and Ishihima, A., 1976, Function and structure of RNA polymerase from vesicular stomatitis virus, /. Biol. Chem. 251: 4307.Google Scholar
  116. Newcomb, W., and Brown, J., 1981, Role of the vesicular stomatitis virus matrix protein in maintaining the viral nucleocapsid in the condensed form found in native virions, /. Virol. 39: 295.Google Scholar
  117. Obijeski, J. F., and Simpson, R. W., 1974, Conditional lethal mutants of vesicular stomatitis virus. H. Synthesis of virus-specific polypeptides in non-permissive cells infected with “RNA—” host restricted mutants, Virology 57: 369.PubMedCrossRefGoogle Scholar
  118. Ongradi, J., Cunningham, C., and Szilagyi, J. F., 1985, The role of polypeptides L and NS in the transcription process of vesicular stomatitis virus New Jersey using the temperature-sensitive mutant is El, I. Gen. Virol. 66: 1011.CrossRefGoogle Scholar
  119. Patton, J. T., Davis, N. L., and Wertz, G. W., 1984, N protein alone satisfies the requirement for protein synthesis during RNA replication of vesicular stomatitis virus, J. Virol. 49: 303.PubMedGoogle Scholar
  120. Peluso, R. W., and Moyer, S. A., 1984, Vesicular stomatitis virus proteins required for the in vitro replication of defective interfering particle genome RNA, in: Nonsegmented Negative Strand Viruses (Paramyxoviruses and Rhabdoviruses) ( D. H. L. Bishop and R. W. Compans, eds.), p. 153, Academic Press, San Francisco.Google Scholar
  121. Perrault, J., 1981, Origin and replication of defective interfering particles, Curr. Top. Microbiol. Immunol. 93: 151–207.PubMedCrossRefGoogle Scholar
  122. Perrault, J., Semier, B. L., Leavitt, R. W., and Holland, J. J., 1978, Inverted complementary terminal sequences in defective interfering particle RNAs of vesicular stoma-titis virus and their possible role in autointerference, in: Negative Strand Viruses and the Host Cell ( B. W. J. Mahy and R. D. Barry, eds.), pp. 527–538, Academic Press, New York.Google Scholar
  123. Pringle, C. R., 1975, Conditional lethal mutants of vesicular stomatitis virus, Curr. Topics Mi cro bi ol. Immunol. 69: 85.CrossRefGoogle Scholar
  124. Pringle, C. R., 1978, The tdCE and hrCE phenotypes: Host range mutants of vesicular stomatitis virus in which polymerase function is affected, Cell 15: 597.PubMedCrossRefGoogle Scholar
  125. Pringle, C. R., 1982, The genetics of vesiculoviruses, Arch. Virol. 72: 1.PubMedCrossRefGoogle Scholar
  126. Rao, D. D., and Huang, A. S., 1979, Synthesis of a small RNA in cells coinfected by standard and defective interfering particles of vesicular stomatitis virus, Proc. Natl. Acad. Sci. U.S.A. 76: 3472.Google Scholar
  127. Reading, C. L., Penhoet, E., and Ballou, C. E., 1978, Carbohydrate structure of vesicular stomatitis virus glycoprotein, J. Biol. Chem. 253: 5600.PubMedGoogle Scholar
  128. Reichmann, M. E., Villarreal, L. P., Kohne, D., Lesnam, J. A., and Holland, J. J., 1974, RNA polymerase activity and poly(A) synthesizing activity in defective T particles of vesicular stomatitis virus, Virology 58: 240.PubMedCrossRefGoogle Scholar
  129. Riedel, H., Kondor-Koch, C., and Garoff, H., 1984, Cell surface expression of fusogenic vesicular stomatitis virus G protein from cloned cDNA, Eur. Mol. Biol. Org. J. 3: 1477.Google Scholar
  130. Robertson, J. S., Schubert, M., and Lazzarini, R. A., 1981, Polyadenylation sites of influenza virus mRNA, J. Virol. 38: 157.PubMedGoogle Scholar
  131. Rose, J. K., 1975, Heterogeneous 5’ terminal structures occur on vesicular stomatites virus mRNAs, J. Biol. Chem. 250: 8098.PubMedGoogle Scholar
  132. Rose, J. K., 1977, Nucleotide sequences of ribosome recognition sites in messenger RNAs of vesicular stomatitis virus, Proc. Natl. Acad. Sci. U.S.A. 74: 3672.PubMedCrossRefGoogle Scholar
  133. Rose, J. K., 1978, Complete sequences of ribosome recognition sites on messenger RNAs of vesicular stomatitis virus, Cell 14: 345.PubMedCrossRefGoogle Scholar
  134. Rose, J. K., 1980, Complete intergenic and flanking gene sequences from the genome of vesicular stomatitis virus, Cell 19: 415.PubMedCrossRefGoogle Scholar
  135. Rose, J. K., and Bergmann, J. E., 1982, Expression from cloned cDNA of cell surface and secreted forms of the glycoprotein of vesicular stomatitis virus in eucaryotic cells, Cell 30: 753.PubMedCrossRefGoogle Scholar
  136. Rose, J. K., and Bergmann, J. E., 1983, Altered cytoplasmic domains affect intracellular transport of the vesicular stomatitis virus glycoprotein, Cell 34: 513.PubMedCrossRefGoogle Scholar
  137. Rose, J. K., and Galion, C., 1981, Nucleotide sequences of the mRNAs encoding the VSV G and M proteins as determined from cDNA clones containing the complete coding regions, J. Virol. 39: 519.PubMedGoogle Scholar
  138. Rose, J. K. and Shafferman, A., 1981, Conditional expression of the vesicular stomatitis virus glycoprotein in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 78: 6670.PubMedCrossRefGoogle Scholar
  139. Rose, J. K., Lodish, H. F., and Brock, M., 1977, Giant heterogeneous polyadenylic acid on vesicular stomatitis virus mRNA synthesized in vitro in the presence of S-adenosylhomocysteine, J. Virol. 21: 683.PubMedGoogle Scholar
  140. Rose, J. K., Welch, W. J., Sefton, B. M., Esch, F. S., and Ling, N. C., 1980. Vesicular stomatitis virus glycoprotein is anchored in the viral membrane by a hydrophobic domain near the COOH terminus, Proc. Natl. Acad. Sci. U.S.A. 77: 3884.PubMedCrossRefGoogle Scholar
  141. Rose, J. K., Doolittle, R. F., Anilionis, A., Curtis, P. J., and Wunner, W. H., 1982, Homology between the glycoproteins of vesicular stomatitis virus and rabies virus, J. Virol. 43: 361.PubMedGoogle Scholar
  142. Rose, J. K., Adams, G., and Gallione, C., 1984, The presence of cysteine in the cytoplasmic domain of the vesicular stomatitis virus glycoprotein is required for palmitate addition, Proc. Natl. Acad. Sci. U.S.A. 81: 2050.PubMedCrossRefGoogle Scholar
  143. Rothman, J. E., and Lodish, H. F., 1977, Synchronized transmembrane insertion and glycosylation of a nascent membrane protein, Nature (London) 269: 775.Google Scholar
  144. Rowlands, D. J., 1979, Sequences of vesicular stomatitis virus RNA in the region coding for leader RNA, N protein RNA and their junction, Proc. Natl. Acad. Sci. U.S.A. 76: 4793.Google Scholar
  145. Sanchez, A., De, B. P., and Banerjee, A. K., 1985, In vitro phosphorylation of NS protein by the L protein of vesicular stomatitis virus, J. Gen. Virol. 66: 1025.Google Scholar
  146. Schlegel, R., and Wade, M., 1984, A synthetic peptide corresponding to the NFL- terminus of VSV glycoprotein is a pH-dependent hemolysin, J. Biol. Chem. 259: 4691.PubMedGoogle Scholar
  147. Schlegel, R., and Wade, M., 1985, Biologically active peptides of the VSV glycoprotein, J. Virol. 53: 319.PubMedGoogle Scholar
  148. Schlesinger, M. J., and Mailer, C., 1982, Cerulenin blocks fatty acid acylation of glycoproteins and inhibits VSV and Sindbis virus particle formation, J. Biol. Chem. 257: 9887.PubMedGoogle Scholar
  149. Schmidt, M. F. G., and Schlesinger, M. J., 1979, Fatty acid binding to vesicular stomatitis virus glycoprotein: A new type of post-translational modification of the viral glycoprotein, Cell 17: 813–819.Google Scholar
  150. Schubert, M., and Lazzarini, R. A., 1981, In vivo transcription of the 5’-terminal extracistronic region of vesicular stomatitis virus RNA, J. Virol. 38: 256.Google Scholar
  151. Schubert, M., and Lazzarini, R A, 1982, In vitro transcription of vesicular stomatitis virus: Incorporation of deoxyguanosine and deoxycytidine, and formation of deoxyguanosine caps, J. Biol. Chem. 257: 2968.Google Scholar
  152. Schubert, M., Keene, J. D., Lazzarini, R. A., and Emerson, S. U., 1978, The complete sequence of a unique RNA species synthesized by a DI particle of VSV, Cell 15: 103.PubMedCrossRefGoogle Scholar
  153. Schubert, M., Keene, J. D., and Lazzarini, R. A., 1979, A specific internal RNA polymerase recognition site of VSV RNA is involved in the generation of DI particles, Cell 18: 749.PubMedCrossRefGoogle Scholar
  154. Schubert, M., Keene, J. D., Herman, R. C., and Lazzarini, R. A., 1980, Site on the vesicular stomatitis virus genome specifying polyadenylation and the end of the L gene mRNA, J. Virol. 34: 550.PubMedGoogle Scholar
  155. Schubert, M., Harmison, G., and Meier, E., 1984, Primary structure of the vesicular stomatitis virus polymerase (L) gene: Evidence for a high frequency of mutations, J. Virol. 51: 505.PubMedGoogle Scholar
  156. Schubert, M., Harmison, G. G., Richardson, C. D., and Meier, E., 1985, Expression of a cDNA encoding a functional, 241 kilodalton vesicular stomatitis virus RNA polymerase, Proc. Natl. Acad. Sci. U.S.A. 82: 7984.PubMedCrossRefGoogle Scholar
  157. Semler, B. L., Perrault, J., Abelson, J., and Holland, J. J., 1978, Sequence of a RNA templated by the 3’-OH RNA terminus of defective interfering particles of vesicular stomatitis virus, Proc. Natl. Acad. Sci. U.S.A. 75: 4704.PubMedCrossRefGoogle Scholar
  158. Simonsen, C. C., Batt-Hymphries, S., and Summers, D. F., 1979, RNA synthesis of vesicular stomatitis virus-infected cells: In vivo regulation of replication, J. Virol. 31: 124.PubMedGoogle Scholar
  159. Simpson, R. W., and Obijeski, J. F., 1974, Conditional lethal mutants of vesicular stomatitis virus. I. Phenotypic characterization of single and double mutants exhibiting host restriction and temperature sensitivity, Virology 57: 357.PubMedCrossRefGoogle Scholar
  160. Sprague, J., Condra, J. H., Arnheiter, H., and Lazzarini, R. A., 1983, Expression of a recombinant DNA gene coding for the vesicular stomatitis virus nucleocapsid protein, J. Virol. 45: 773.PubMedGoogle Scholar
  161. Szilagyi, J. F., Pringle, C. R., and MacPherson, T. M., 1977, Temperature-dependent host range mutation in vesicular stomatitis virus affecting polypeptide L, J. Virol. 22: 381.PubMedGoogle Scholar
  162. Testa, D., and Banerjee, A. K., 1977, Two methyl transferase activities in the purified virions of vesicular stomatitis virus, J. Virol. 24: 786.PubMedGoogle Scholar
  163. Thomas, D., Newcomb, W. W., Brown, J. C., Wall, J. S., Hainfield, J. F., Trus, B. L., and Alasdair, S. C., 1985, Mass and molecular composition of vesicular stomatitis virus: A scanning transmission electron microscopy analysis, J. Virol. 54: 598.PubMedGoogle Scholar
  164. Venkatesan, S., and Moss, B., 1982, Eucaryotic mRNA capping enzyme—guanylate covalent intermediate, Proc. Natl. Acad. Sci. U.S.A. 79: 340.PubMedCrossRefGoogle Scholar
  165. Villarreal, L. P., and Holland, J. J., 1973, Synthesis of poly(A) in vitro by purified virions of vesicular stomatitis virus, Nature(London) 245: 17.Google Scholar
  166. Wang, D., Furuichi, Y., and Shatkin, A. J., 1982, Covalent guanylyl intermediate formed by HeLa cell mRNA capping enzyme, Mol. Cell. Biol. 2: 993.PubMedGoogle Scholar
  167. Weck, P. K., and Wagner, R. R., 1978, Inhibition of RNA synthesis in mouse myeloma cells infected with vesicular stomatitis virus, J. Virol. 25: 720.Google Scholar
  168. Weck, P. K., and Wagner, R. R., 1979, Transcription of vesicular stomatitis virus is required to shut off cellular RNA synthesis, J. Virol. 30: 410.PubMedGoogle Scholar
  169. Weck, P. K., Carroll, A. R., Shattuck, D. M., and Wagner, R. R., 1979, Use of U.V. irradiation to identify the genetic information of vesicular stomatitis virus responsible for shutting off cellular RNA synthesis, J. Virol. 30: 746.PubMedGoogle Scholar
  170. Wertz, G. W., and Levine, M., 1973, RNA synthesis by vesicular stomatitis virus and a small plaque mutant: Effects of cycloheximide, J. Virol. 12: 253.PubMedGoogle Scholar
  171. Wertz, G. W., and Youngner, J. S., 1972, Inhibition of protein synthesis in L cells infected with vesicular stomatitis virus, J. Virol. 9: 85.PubMedGoogle Scholar
  172. White, J., Kielian, M., and Helenius, A., 1983, Viral fusion proteins, Q. Rev. Biol. Phys. 16: 151.Google Scholar
  173. Wilusz, J., Kurilla, M. G., and Keene, J. D., 1983, A host protein (La) binds to a unique species of minus-sense leader RNA during replication of vesicular stomatitis virus, Proc. Natl. Acad. Sci. U.S.A. 80: 5827.PubMedCrossRefGoogle Scholar
  174. Wu, F.-S., and Lucas-Lenard, J., 1980, Inhibition of RNA accumulation in mouse L cells infected with VSV requires viral RNA transcription, Biochemistry 19: 804.PubMedCrossRefGoogle Scholar
  175. Zakowski, J. J., and Wagner, R. R., 1980, Localization of membrane associated proteins in vesicular stomatitis virus by use of hydrophobic membrane probes and cross-linking reagents, J. Virol. 36: 93.PubMedGoogle Scholar
  176. Zakowski, J. J., Petri, W. A., and Wagner, R. R., 1981, Role of matrix protein in assembling the membrane of vesicular stomatitis virus: Reconstitution of matrix protein with negatively charged phospholipid vesicles, Biochemistry 23: 3902.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • John Rose
    • 1
  • Manfred Schubert
    • 2
  1. 1.Departments of Pathology and Cell BiologyYale University School of MedicineNew HavenUSA
  2. 2.Laboratory of Molecular GeneticsNational Institute of Neurological and Communicative Disorders and StrokeBethesdaUSA

Personalised recommendations