Advertisement

Tobacco Mosaic Virus Mutants and Strains

  • Satyabrata Sarkar
Part of the The Viruses book series (VIRS)

Abstract

The properties of a virus as well as of all living organisms are subject to variation giving rise to altered forms, even though the change may not be very conspicuous. Once recognized, a variant is called a mutant if it was found under experimental conditions, indicating a probable direct origin from the apparently homogeneous starting population. In fact, preparations of viruses are rarely free of at least a few variants (Bawden, 1950; Garciá-Arenal et al., 1984). The word strain, on the other hand, is usually chosen for variants that are found in the field, sometimes in regions widely apart, so that the time and mode of origin of the variant remain unknown (Hennig and Wittmann, 1972). The extent to which a particular variant differs from the original strain can only be known if the detailed structure of both are determined at the molecular level. The results show that the difference between a strain and a mutant is one of degree only.

Keywords

Coat Protein Tobacco Mosaic Virus Wild Strain Mosaic Disease Amino Acid Exchange 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aach, H. G., 1958a, Spektrophotometrische Untersuchungen an Mutanten des Tabakmosaikvirus, Z. Naturforsch. 13b: 165.Google Scholar
  2. Aach, H. G., 1958b, Quantitative Aminosäuren-Analysen an Mutanten des Tabakmosaik-virus, Z. Naturforsch. 13b: 425.Google Scholar
  3. Ainsworth, G. C., 1935, Mosaic diseases of the cucumber, Ann. Appl. Biol. 22: 55.CrossRefGoogle Scholar
  4. Anderer, F. A., Uhlig, H., Weber, E., and Schramm, G., 1960, Primary structure of the protein of tobacco mosaic virus, Nature (London) 186: 922.CrossRefGoogle Scholar
  5. Bald, J. G., Gumpf, D. J., and Heick, J., 1974, Transition from common tobacco mosaic virus to the Nicotiana glauca form, Virology 59: 467.PubMedCrossRefGoogle Scholar
  6. Banerjee, K., and Lauffer, M. A., 1966, Polymerization—depolymerization of tobacco mosaic virus protein. VI. Osmotic pressure studies of early stages of polymerization, Biochemistry 5: 1957.PubMedCrossRefGoogle Scholar
  7. Bawden, F. C., 1950, Plant Viruses and Virus Diseases, 3rd ed., Chronica Botanica, Waltham, Mass.Google Scholar
  8. Bawden, F. C., 1958, Reversible changes in strains of tobacco mosaic virus from leguminous plants, J. Gen. Microbiol. 18: 751.PubMedGoogle Scholar
  9. Bawden, F. C., and Kassanis, B., 1945, The suppression of one plant virus by another, Ann. Appl. Biol. 32: 52.CrossRefGoogle Scholar
  10. Bawden, F. C., and Pirie, N. W., 1937, The isolation and some properties of liquid crystalline substances from solanaceous plants infected with three strains of tobacco mosaic virus, Proc. R. Soc. London Ser. B 123: 274.CrossRefGoogle Scholar
  11. Bewley, W. F., 1924, Mycological investigations, Chestnut Exp. Res. Stn., Hertfordshire, Annu. Rep. 9 (1923): 66.Google Scholar
  12. Bhalla, R. B., and Sehgal, O. P., 1973, Host range and purification of the nucleic acid of a defective mutant of tobacco mosaic virus, Phytopathology 63: 906.CrossRefGoogle Scholar
  13. Brammer, K. W., 1963, Chemical modification of viral ribonucleic acid. II. Bromination and iodination, Biochim. Biophys. Acta 72: 217.PubMedCrossRefGoogle Scholar
  14. Capoor, S. P., 1950, A mosaic disease of sunn hemp in Bombay, Curr. Sci., 19: 22.Google Scholar
  15. Caspar, D. L. D., 1963, Assembly and stability of the tobacco mosaic virus particle, Adv. Protein Chem. 18: 37.PubMedCrossRefGoogle Scholar
  16. Dawson, W. O., and Jones, G. E., 1976, A procedure for specifically selecting temperature sensitive mutants of tobacco mosaic virus, Mol. Gen. Genet. 145: 307.CrossRefGoogle Scholar
  17. Diener, T. O., 1962, Isolation of an infectious, ribonuclease sensitive fraction from tobacco leaves recently inoculated with tobacco mosaic virus, Virology 16: 140.PubMedCrossRefGoogle Scholar
  18. Dodds, J. A., and Hamilton, R. I., 1972, The influence of barley stripe mosaic virus on the replication of tobacco mosaic virus in Hordeum vulgare L., Virology 50: 404.CrossRefGoogle Scholar
  19. Dodds, J. A., and Hamilton, R. I., 1976, Structural interactions between viruses as a consequence of mixed infections, Adv. Virus Res. 20: 33.PubMedCrossRefGoogle Scholar
  20. Fraenkel-Conrat, H., 1956, The role of the nucleic acid in the reconstitution of active tobacco mosaic virus, J. Am. Chem. Soc. 78: 882.CrossRefGoogle Scholar
  21. Fraenkel-Conrat, H., 1961, Chemical modification of viral ribonucleic acid. I. Alkylating agents, Biochim. Biophys. Acta 49: 169.PubMedCrossRefGoogle Scholar
  22. Fraenkel-Conrat, H., 1981, Portraits of viruses: Tobacco mosaic virus, Intervirology 15: 177.PubMedCrossRefGoogle Scholar
  23. Fraenkel-Conrat, H., and Singer, B., 1957, Virus reconstitution. II. Combination of protein and nucleic acid from different strains, Biochim. Biophys. Acta 24: 540.PubMedCrossRefGoogle Scholar
  24. Fraenkel-Conrat, H., and Singer, B., 1959, Reconstitution of tobacco mosaic virus. III. Improved method and the use of mixed nucleic acids, Biochim. Biophys. Acta 33: 359.PubMedCrossRefGoogle Scholar
  25. Fraenkel-Conrat, H., Singer, B., and Tsugita, A., 1961, Purification of viral RNA by means of bentonite, Virology 14: 54.PubMedCrossRefGoogle Scholar
  26. Fraser, R. S. S., 1983, Varying effectiveness of the N’ gene for resistance to tobacco mosaic virus in tobacco infected with virus strains differing in coat protein properties, Physiol. Plant Pathol. 22: 109.Google Scholar
  27. Funatsu, G., and Fraenkel-Conrat, H., 1964, Location of amino acid exchanges in chemically evoked mutants of tobacco mosaic virus. Biochemistry 3: 1356.PubMedCrossRefGoogle Scholar
  28. Garciâ-Arenal, F., Palukaitis, P., and Zaitlin, M., 1984, Strains and mutants of tobacco mosaic virus are both found in virus derived from single-lesion-passaged inoculum, Virology 132: 131.PubMedCrossRefGoogle Scholar
  29. Gibbs, A., and Harrison, B., 1976, Plant Virology: The Principles, Arnold, London.Google Scholar
  30. Gierer, A., and Mundry, K. W., 1958, Production of mutants of tobacco mosaic virus by chemical alteration of its ribonucleic acid in vitro, Nature (London) 182: 1457.CrossRefGoogle Scholar
  31. Gierer, A., and Schramm, G., 1956, Die Infektiosität der Nukleinsäure aus Tabakmosaik-virus, Z. Naturforsch. 116: 138.Google Scholar
  32. Hariharasubramanian, V., and Siegel, A., 1969, Characterization of a new defective strain of TMV, Virology 37: 203.PubMedCrossRefGoogle Scholar
  33. Hariharasubramanian, V., Smith, R. C., and Zaitlin, M., 1973, Insoluble coat protein mutants of TMV: Their origin, and characterization of the defective coat proteins, Virology 55: 202.PubMedCrossRefGoogle Scholar
  34. Hennig, B., and Wittmann, H. G., 1972, Tobacco mosaic virus: Mutants and strains, in: Principles and Techniques in Plant Virology ( C. I. Kado and H. O. Agarwal, eds.), pp. 546–594, Van Nostrand—Reinhold, Princeton, N.J.Google Scholar
  35. Hiruki, C., and Hidaka, Z, 1954, cited by Nozu, Y., and Okada, Y., 1968, Amino acid sequence of a common Japanese strain of tobacco mosaic virus, J. Mol. Biol. 35: 643.Google Scholar
  36. Holmes, F. 0., 1929, Local lesions in tobacco mosaic, Bot. Gaz. 87: 39.CrossRefGoogle Scholar
  37. Holmes, F. 0., 1934, A masked strain of tobacco mosaic virus, Phytopathology 24: 845.Google Scholar
  38. Holmes, F. O., 1941, A distinctive strain of tobacco mosaic virus from Plantago, Phytopathology 31: 1089.Google Scholar
  39. Hubert, J. J., and Bourque, D. P., 1981, Improved method for the isolation and propagation of defective tobacco mosaic virus mutants, Phytopathology 71: 295.CrossRefGoogle Scholar
  40. Inouye, T., Inouye, N., Asatani, M., and Mitsuhata, K., 1967, Studies on cucumber green mottle virus I, Nogaku Kenkyu 51: 175.Google Scholar
  41. Ivanowski, D., 1899, Über die Mosaikkrankheit der Tabak pflanze, Bull.Acad. Imp. Sci. St.-Petersbourg (New Ser.) 3: 65.Google Scholar
  42. Jauregui-Adell, J., Hindennach, I., and Wittmann, H. G., 1969, Die primäre Proteinstruktur von Stämmen des Tabakmosaikvirus. Teil V: Aminosäuresequenz (1–61(des Proteins des Tabakmosaikvirus-Stammes Holmes rib grass, Z. Naturforsch. 24b: 877.Google Scholar
  43. Jensen, D. D., and Gold, A. H., 1951, A virus ring spot of Odontoglossum orchid: Symptoms, transmission and electron microscopy, Phytopathology 41: 648.Google Scholar
  44. Jensen, J. H., 1937, Studies on representative strains of tobacco mosaic virus, Phytopathology 27: 69.Google Scholar
  45. Jockusch, H., 1964, In vivo und in vitro Verhalten temperatursensitiver Mutanten des Tabakmosaikvirus, Z. Vererbungsl. 95: 379.PubMedCrossRefGoogle Scholar
  46. Jockusch, H., 1966a, Relations between temperature sensitivity, amino acid replacements and quaternary structure of mutant proteins, Biochem. Biophys. Res. Commun. 24: 577.PubMedCrossRefGoogle Scholar
  47. Jockusch, H., 1966b, Temperatursensitive Mutanten des Tabakmosaikvirus. I. In vivo-ver-halten, Z. Vererbungsl. 98: 320.Google Scholar
  48. Jockusch, H., 1966c, Temperatursensitive Mutanten des Tabakmosaikvirus. II. In vitro-verhalten, Z. Vererbungsl. 98: 344.Google Scholar
  49. Jockusch, H., 1968, Two mutants of tobacco mosaic virus temperature-sensitive in two different functions, Virology 35: 94.PubMedCrossRefGoogle Scholar
  50. Kado, C. I., Van Regenmortel, M. H. V., and Knight, C. A., 1968, Studies on some strains of tobacco mosaic virus in orchids. I. Biological, chemical and serological studies, Virology 34: 17.PubMedCrossRefGoogle Scholar
  51. Kassanis, B., and Bastow, C., 1971a, In vivo phenotypic mixing between two strains of tobacco mosaic virus, J. Gen. Virol. 10: 95.CrossRefGoogle Scholar
  52. Kassanis, B., and Bastow, C., 1971b, Phenotypic mixing between strains of tobacco mosaic virus, J. Gen. Virol. 11: 171.PubMedCrossRefGoogle Scholar
  53. Kassanis, B., and Conti, M., 1971, Defective strains and phenotypic mixing, j. Gen. Virol. 13: 361.CrossRefGoogle Scholar
  54. Kassanis, B., and Turner, R. H., 1972, Virus inclusions formed by the PM2 mutant of TMV, J. Gen. Virol. 14: 119.PubMedCrossRefGoogle Scholar
  55. Kausche, G. A., and Ruska, H., 1939, Die Struktur der kristallinen Aggregate des Tabakmosaikvirus-Proteins, Biochem. Z. 303: 211.Google Scholar
  56. Knight, C. A., 1963, Chemistry of viruses, in: Protoplasmatologia, Handbuch der Protoplasmaforschung ( Alfert, M., Bauer, H., and Harding, C. V., eds.), Volume IV, pp. 11–77, Springer-Verlag, Berlin.Google Scholar
  57. Knight, C. A., 1975, Chemistry of viruses, in: Protoplasmatologia, Handbuch der Protoplasmaforschung (Alfert, Bauer, and Harding, eds.), Volume IV, 2nd ed., Springer-Verlag, Berlin.Google Scholar
  58. Knight, C. A., Silva, D. M., Dahl, D., and Tsugita, A., 1962, Two distinctive strains of tobacco mosaic virus, Virology 16: 236.PubMedCrossRefGoogle Scholar
  59. Kramer, E., 1957, Elektrophoretische Untersuchungen an Mutanten des Tabakmosaikvirus, Z. Naturforsch. 12b: 609.Google Scholar
  60. Kramer, G., and Wittmann, H. G., 1958, Elektrophoretische Untersuchungen der Aproteine dreier Tabakmosaikvirus-Stämme, Z. Naturforsch. 13b: 30.Google Scholar
  61. Kramer, G., Wittmann, H. G., and Schuster, H., 1964, Die Erzeugung von Mutanten des Tabakmosaikvirus durch den Einbau von fluorouracil in die Virusnucleinsäure, Z. Naturforsch. 19b: 46.Google Scholar
  62. Kunkel, L. O., 1934, Studies on acquired immunity with tobacco and aucuba mosaics, Phytopathology 24: 437.Google Scholar
  63. Lister, R. M., and Thresh, J. M., 1955, A mosaic disease of leguminous plants caused by a strain of tobacco mosaic virus, Nature (London) 175: 1047.CrossRefGoogle Scholar
  64. McKinney, H. H., 1929, Mosaic diseases in the Canary Islands, West Africa and Gibraltar, J. Agric. Res. 39: 557.Google Scholar
  65. MacNeill, B. H., and Boxall, M., 1974, The evolution of a pathogenic strain of tobacco mosaic virus in tomato: A host-passage phenomenon, Can. J. Bot. 52: 1305.CrossRefGoogle Scholar
  66. Matthews, R. E. F., 1981, Plant Virology, Academic Press, New York.Google Scholar
  67. Melchers, G., 1940, Die biologische Untersuchung des “Tomatenmosaikvirus Dahlem 1940,” Biol. Zentralbi. 60: 527.Google Scholar
  68. Melchers, G., 1942, Über einige Mutationen des Tabakmosaikvirus und eine “Parallelmutation” des Tomatenmosaikvirus, Naturwissenschaften 30: 48.CrossRefGoogle Scholar
  69. Melchers, G., Jockusch, H., and von Sengbusch, P., 1966, A tobacco mutant with a dominant allele for hypersensitivity against some TMV strains, Phytopathol. Z. 55: 86.CrossRefGoogle Scholar
  70. Miller, P. M., 1953, An apparently new viral disease of tomatoes in Illinois, Phytopathology 43: 480.Google Scholar
  71. Mundry, K. W., 1957a, Zur Frage des Einflusses von Röntgen-und UV-Strahlen auf die Mutationsrate des Tabakmosaikvirus nach Behandlung reiner Präparate, Z. Indukt. Abstamm. Verebungsl. 88: 115.CrossRefGoogle Scholar
  72. Mundry, K. W, 1957b, Die Abhängigkeit des Auftretens neuer Virusstämme von der Kulturtemperatur der Wirtspflanzen, Z. Indukt. Abstamm. Vererbungsl. 88: 407.PubMedCrossRefGoogle Scholar
  73. Mundry, K. W., 1959, The effect of nitrous acid on tobacco mosaic virus: Mutation, not selection, Virology 9: 722.PubMedCrossRefGoogle Scholar
  74. Mundry, K. W., 1960, Mutationsuntersuchungen am Tabakmosaikvirus in vitro. H. Versuche zum Problem der Mutagenese durch UV-Bestrahlung reiner Viruspräparate, Z. Vererbungsl. 91: 87.PubMedCrossRefGoogle Scholar
  75. Mundry, K. W., and Gierer, A., 1958, Die Erzeugung von Mutationen des TMV durch chemische Behandlung seiner Nukleinsäure in vitro, Z. Vererbungsl. 89: 614.PubMedCrossRefGoogle Scholar
  76. Nagata, C., and Martensson, O., 1968, On the mechanism of mutagenic action of hydroxylamine, J. Theor. Biol. 19: 133.PubMedCrossRefGoogle Scholar
  77. Nirenberg, M. W., and Matthaei, J. H., 1961, The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides, Proc. Natl. Acad. Sci. USA 47: 1588.PubMedGoogle Scholar
  78. Nirenberg, M., Leder, P., Bemfield, M., Brimacombe, R., Trupin, J., Rottmann, F., and O’Neal, C., 1965, RNA codewords and protein synthesis. VII. On the general nature of the RNA code, Proc. Natl. Acad. Sci. USA 53: 1161.PubMedCrossRefGoogle Scholar
  79. Opel, H., Kegler, H., and Richter, J., 1969, Vorkommen und Charakterisierung von TMVStämmen des Kernobstes, Acta Phytopathol. Acad. Sci. Hung. 4: 1.Google Scholar
  80. Pelham, J., Fletcher, J. T., and Hawkins, J. H., 1970, The establishment of a new strain of tobacco mosaic virus resulting from the use of resistant varieties, Ann. Appl. Biol. 65: 293.CrossRefGoogle Scholar
  81. Peters, D. L., and Murphy, T. M., 1975, Selection of temperature-sensitive mutants of tobacco mosaic virus by lesion morphology, Virology 65: 595.PubMedCrossRefGoogle Scholar
  82. Rombauts, W., and Fraenkel-Conrat, H., 1968, Artificial histidine-containing mutants of tobacco mosaic virus, Biochemistry 7: 3334.PubMedCrossRefGoogle Scholar
  83. Sammons, I. M., and Chessin, M., 1961, Cactus virus in the United States, Nature (London) 191: 517.CrossRefGoogle Scholar
  84. Sarkar, S., 1960, Interaction and mixed aggregation of proteins from tobacco mosaic virus strains, Z. Naturforsch. 15b: 778.Google Scholar
  85. Sarkar, S., 1963, Relative infectivity of tobacco mosaic virus and its nucleic acid, Virology 20: 185.PubMedCrossRefGoogle Scholar
  86. Sarkar, S., 1969, Evidence of phenotypic mixing between two strains of tobacco mosaic virus, Mol. Gen. Genet. 105: 87.PubMedCrossRefGoogle Scholar
  87. Sarkar, S., and Smitamana, P., 198la, A truly coat-protein-free mutant of tobacco mosaic virus, Naturwissenschaften 68: 145.Google Scholar
  88. Sarkar, S., and Smitamana, P., 198 lb, A proteinless mutant of tobacco mosaic virus: Evidence against the role of a viral coat protein for interference, Mol. Gen. Genet. 184: 158.Google Scholar
  89. Schaskolskaya, N. D., Atabekov, J. G., Sacharovskaya, G. N., and Javachia, V. G., 1968, Replication of temperature-sensitive strain of tobacco mosaic virus under nonpermissive conditions in the presence of helper strain, Biol. Sci. (USSR) 8: 101.Google Scholar
  90. Schramm, G., 1947, Über die Spaltung des Tabakmosaikvirus und die Wiedervereinigung der Spaltstücke zu höhermolekularen Proteinen. I. Die Spaltungsreaktion, Z. Naturforsch. 2b: 112.Google Scholar
  91. Schuster, H., and Schramm, G., 1958, Bestimmung der biologisch wirksamen Einheit in der Ribosenukleinsäure des Tabakmosaikvirus auf chemischen Wege, Z. Naturforsch. 13b: 697.Google Scholar
  92. Schuster, H., and Wittmann, H. G., 1963, The inactivating and mutagenic action of hydroxylamine on tobacco mosaic virus ribonucleic acid, Virology 19: 421.PubMedCrossRefGoogle Scholar
  93. Sehgal, O. P., 1973, Biological and physico-chemical properties of an atypical mutant of tobacco mosaic virus, Mol. Gen. Genet. 121: 15.PubMedCrossRefGoogle Scholar
  94. Siegel, A., and Wildman, S G, 1954, Some natural relationships among strains of tobacco mosaic virus, Phytopathology 44: 277.Google Scholar
  95. Siegel, A., Zaitlin, M., and Sehgal, O. P., 1962, The isolation of defective tobacco mosaic virus strains, Proc. Natl. Acad. Sci. USA 48: 1845.PubMedCrossRefGoogle Scholar
  96. Siegel, A., Hills, G. J., and Markham, R., 1966, In vitro and in vivo aggregation of the defective PM2 TMV protein, J. Mol. Biol. 19: 140.PubMedCrossRefGoogle Scholar
  97. Singer, B., and Fraenkel-Conrat, H., 1965, Effects of light in the presence of iron salts on ribonucleic acid and model compounds, Biochemistry 4: 226.CrossRefGoogle Scholar
  98. Singer, B., and Fraenkel-Conrat, H., 1966, Dye catalyzed photoinactivation of tobacco mosaic virus ribonucleic acid, Biochemistry 5: 2446.PubMedCrossRefGoogle Scholar
  99. Singer, B., and Fraenkel-Conrat, H., 1967, Chemical modification of viral RNA. VI. The action of N-methyl-N’-nitro-N-nitrosoguanidine, Proc. Natl. Acad. Sci. USA 58: 234.PubMedCrossRefGoogle Scholar
  100. Singer, B., and Fraenkel-Conrat, H., 1974, Correlation between amino acid exchanges in coat protein of TMV mutants and the nature of the mutagenesis, Virology 60: 485.PubMedCrossRefGoogle Scholar
  101. Singer, B., Sun, L., and Fraenkel-Conrat, H., 1975, Effects of alkylation of phosphodiesters and of bases on infectivity and stability of tobacco mosaic virus RNA, Proc. Natl. Acad. Sci. USA 72: 2232.PubMedCrossRefGoogle Scholar
  102. Singer, S. J., Bald, J. G., Wildman, S. G., and Owen, R. D., 1951, The detection and isolation of naturally occurring strains of tobacco mosaic virus by electrophoresis, Science 114: 463.PubMedCrossRefGoogle Scholar
  103. Spackman, B. H., Stein, W. H., and Moore, S., 1958, Automatic recording apparatus for use in the chromatography of amino acids, Anal. Chem. 30: 1190.CrossRefGoogle Scholar
  104. Stanley, W. M., 1935, Isolation of a crystalline protein possessing the properties of the tobacco mosaic virus, Science 81: 644.PubMedCrossRefGoogle Scholar
  105. Takahashi, W. N., 1956, Increasing the sensitivity of the local-lesion method of virus assay, Phytopathology 46: 654.Google Scholar
  106. Tsugita, A., 1962, The proteins of mutants of TMV: Composition and structure of chemically evoked mutants of TMV-RNA, J. Mol. Biol. 5: 284.PubMedCrossRefGoogle Scholar
  107. Tsugita, A., and Fraenkel-Conrat, H., 1962, The composition of proteins of chemically evoked mutants of TMV-RNA, J. Mol. Biol. 4: 73.PubMedCrossRefGoogle Scholar
  108. Tsugita, A., Gish, D. T., Young, J., Fraenkel-Conrat, H., Knight, C. A., and Stanley, W. M., 1960, The complete amino acid sequence of the protein of tobacco mosaic virus, Proc. Natl. Acad. Sci. USA 46: 1463.PubMedCrossRefGoogle Scholar
  109. Van Regenmortel, M. H. V., 1967, Serological studies on naturally occurring strains and chemically induced mutants of tobacco mosaic virus, Virology 31: 467.PubMedCrossRefGoogle Scholar
  110. von Sengbusch, P., 1965, Aminosäureaustausche und Tertiärstruktur eines Proteins. Vergleich von Mutanten des Tabakmosaikvirus mit serologischen und physikochemischen Methoden, Z. Vererbungsl. 96: 364.CrossRefGoogle Scholar
  111. von Sengbusch, P., and Wittmann, H. G., 1965, Serological and physicochemical properties of the wild strains and two mutants of tobacco mosaic virus with the same amino acid exchange in different positions of the protein chain, Biochem. Biophys. Res. Commun. 18: 780.CrossRefGoogle Scholar
  112. Wang, A. L., and Knight, C. A., 1967, Analysis of protein components of tomato strains of tobacco mosaic virus, Virology 31: 101.PubMedCrossRefGoogle Scholar
  113. Wertz, J. M., Smitamana, P., and Sarkar, S., 1986, Characterisation of a defective mutant of the dahlemense strain of tobacco mosaic virus, Z. Naturforsch. (in press).Google Scholar
  114. Wetter, C., 1984, Antigenic relationships between isolates of mild dark-green tobacco mosaic virus, and the problem of host-induced mutation, Phytopathology 74: 1308.CrossRefGoogle Scholar
  115. Wittmann, H. G., 1959, Vergleich der Proteine des Normalstammes und einer Nitritmutante des Tabakmosaikvirus, Z. Vererbungsl. 90: 463.PubMedCrossRefGoogle Scholar
  116. Wittmann, H. G., 1960, Tryptic peptides within the polypeptide chain of tobacco mosaic virus and a new manner of determining their arrangement, Virology 11: 505.PubMedCrossRefGoogle Scholar
  117. Wittmann, H. G., 1962, Proteinuntersuchungen an Mutanten des Tabakmosaikvirus als Beitrag zum Problem des genetischen Codes, Z. Vererbungsl. 93: 491.CrossRefGoogle Scholar
  118. Wittmann, H. G., 1964, Proteinanalysen von chemisch induzierten Mutanten des Tabakmosaikvirus, Z. Vererbungsl. 95: 333.PubMedCrossRefGoogle Scholar
  119. Wittmann, H. G., 1965, Die Proteinstruktur der Defektmutante PM2 des Tabakmosaikvirus, Z. Vererbungsl. 97: 29 7.Google Scholar
  120. Wittmann, H. G., and Wittmann-Liebold, B., 1966, Protein chemical studies of the RNA viruses and their mutants, Cold Spring Harbor Symp. Quant. Biol. 31: 163.PubMedCrossRefGoogle Scholar
  121. Wittmann, H. G., Wittmann-Liebold, B., and Jauregui-Adell, J., 1965, Die primäre Proteinstruktur temperatursensitiver Mutanten des Tabakmosaikvirus, Z. Naturforsch. 20b: 1224.Google Scholar
  122. Wittmann, H. G., Hindennach, I., and Wittmann-Liebold, B., 1969, Die primäre Proteinstruktur von Stämmen des Tabakmosaikvirus. Teil V. Aminosäuresequenz (Positionen 62–156) des Proteins des Tabakmosaikvirusstammes Holmes rib grass, Z. Naturforsch. 246: 870.Google Scholar
  123. Wittmann-Liebold, B., and Wittmann, H. G., 1963, Die primäre Proteinstruktur von Stämmen des Tabakmosaikvirus, Z. Vererbungsl. 94: 427.PubMedCrossRefGoogle Scholar
  124. Wittmann-Liebold, B., and Wittmann, H. G., 1965a, Lokalisierung von Aminosäureaustauschen bei Spontanmutanten und nach fluorouracil-einbau isolierten Mutanten des Tabakmosaikvirus, Z. Vererbungsl. 97: 218.PubMedCrossRefGoogle Scholar
  125. Wittmann-Liebold, B., and Wittmann, H. G., 1965b, Lokalisierung von Aminosäureaustauschen bei Nitritmutanten des Tabakmosaikvirus, Z. Vererbungsl. 97: 305.PubMedCrossRefGoogle Scholar
  126. Wittmann-Liebold, B., and Wittmann, H. G., 1967, Coat proteins of strains of two RNA viruses: Comparison of their amino acid sequences, Mol. Gen. Genet. 100: 358.PubMedCrossRefGoogle Scholar
  127. Wittmann-Liebold, B., Jauregui-Adell, J., and Wittmann, H. G., 1965, Die primäre Proteinstruktur temperatursensitiver Mutanten des Tabakmosaikvirus. II. Chemisch induzierte Mutanten, Z. Naturforsch. 20b: 1235.Google Scholar
  128. Zaitlin, M., and Ferris, W. R., 1964, Unusual aggregation of a nonfunctional tobacco mosaic virus protein, Science 143: 1451.PubMedCrossRefGoogle Scholar
  129. Zaitlin, M., and McCaughey, W. F., 1965, Amino acid composition of a nonfunctional tobacco mosaic virus protein, Virology 26: 500.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Satyabrata Sarkar
    • 1
  1. 1.Institute of Plant MedicineUniversity of HohenheimStuttgart 70West Germany

Personalised recommendations