Role of Calmodulin in the Regulation of Neuronal Function

  • M. Billingsley
  • I. Hanbauer
  • D. Kuhn


Calcium and cyclic nucleotides have long been recognized to act as second messengers operative in the amplification of extracellular signals controlling cellular responses in eucaryotic cells.1 The mode by which the free intracellular Ca2+ concentration is coupled to cellular regulatory mechanisms has been elucidated by the discovery of structurally related proteins that possess high-affinity binding sites for Ca2+.2 Among this group of proteins, only calmodulin (CaM) has a broad distribution within the cell and throughout different tissues and species.3 Moreover, in the nervous system CaM has been found in both pre- and postsynaptic neuronal elements. The ability of CaM to bind Ca2+ and subsequently to interact with a large number of enzymes and proteins has established a pivotal role of this regulatory protein in neuronal function.


Tyrosine Hydroxylase Adenylate Cyclase Myelin Basic Protein Cyclic Nucleotide Dependent Protein Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rasmussen, H., 1970, Science 170:404–412.PubMedCrossRefGoogle Scholar
  2. 2.
    Vamaman, T. C., Sharief, F. S., and Watterson, D. M., 1977, Calcium Binding Protein and Function (R. H. Wasserman, R. A. Corradino, E. Carafoli, R. H. Kretsinger, D. H. Mac-Lennan, and F. L. Seigel, eds.), American Elsevier, New York, pp. 107–116.Google Scholar
  3. 3.
    Cheung, W. Y., 1980, Calcium and Cell Function, Volume 1, Academic Press, New York.Google Scholar
  4. 4.
    Katz, B., and Miledi, R., 1967, J. Physiol. (Lond.) 192:407–436.Google Scholar
  5. 5.
    Douglas, W. W., 1968, Br. J. Pharmacol. 34:451–474.PubMedCrossRefGoogle Scholar
  6. 6.
    Lovenberg, W., Bruckwick, E. A., and Hanbauer, I., 1975, Proc. Natl. Acad. Sci. U.S.A. 72:2955–2958.PubMedCrossRefGoogle Scholar
  7. 7.
    Morgenroth, V. H., Hegstrand, L. R., Roth, R. H., and Greengard, P., 1975, J. Biol. Chem. 250:1946–1948.PubMedGoogle Scholar
  8. 8.
    Yamauchi, T., and Fujisawa, H., 1979, Biochem. Biophys. Res. Commun. 90:28–35.PubMedCrossRefGoogle Scholar
  9. 9.
    Yamauchi, T., and Fujisawa, H., 1980, Biochem. Int. 1:98–104.Google Scholar
  10. 10.
    Hamon, M., Bourgoin, S., Hery, F., and Glowinski, J., 1978, Mol. Pharmacol. 14:99–110.PubMedGoogle Scholar
  11. 11.
    Kuhn, D. M., Vogel, R. L., and Lovenberg, W., 1978, Biochem. Biophys. Res. Commun. 82:759–766.PubMedCrossRefGoogle Scholar
  12. 12.
    Vitto, A., and Mandell, A. J., 1981, J. Neurochem. 37:601–607.PubMedCrossRefGoogle Scholar
  13. 13.
    Kuhn, D. M., 1982, Psychopharmacol. Bull. 18:161–165.Google Scholar
  14. 14.
    Kuhn, D. M., O’Callaghan, J. P., Juskevich, J., and Lovenberg, W., 1980, Proc. Natl. Acad. Sci. U.S.A. 77:4688–4691.PubMedCrossRefGoogle Scholar
  15. 15.
    Levin, R. M., and Weiss, B., 1979, J. Pharmacol. Exp. Ther. 208:454–459.PubMedGoogle Scholar
  16. 16.
    Charbonneau, H., and Cormier, M. J., 1979, Biochem. Biophys. Res. Commun. 90:1039–1047.PubMedCrossRefGoogle Scholar
  17. 17.
    Hamon, M., Bourgoin, J. S., Artaud, F., and Glowinski, J., 1979, J. Neurochem. 33:1031–1042.PubMedCrossRefGoogle Scholar
  18. 18.
    Mestikevay, S. L., Bourgoin, S., Artaud, F., and Hamon, M., 1982, Function and Regulation of Monoamine Enzymes: Basic and Clinical Aspects (E. Usdin, N. Weiner, and M. Youdim, eds.), Macmillan, London, New York, pp. 175–186.Google Scholar
  19. 19.
    Boadle-Biber, M. C., 1978, Biochem. Pharmacol. 27:1069–1079.PubMedCrossRefGoogle Scholar
  20. 20.
    Boadle-Biber, M. C., 1979, Biochem. Pharmacol. 28:2129–2138.PubMedCrossRefGoogle Scholar
  21. 21.
    Elks, M. L., Youngblood, W. W., and Kizer, J. S., 1979, Brain Res. 172:471–486.PubMedCrossRefGoogle Scholar
  22. 22.
    Boadle-Biber, M. C., 1982, Biochem. Pharmacol. 31:2495–2503.PubMedCrossRefGoogle Scholar
  23. 23.
    Haycock, J. W., Meligeni, J. A., Bennett, W. F., and Waymire, J. C., 1982, J. Biol. Chem. 257:12641–12648.PubMedGoogle Scholar
  24. 24.
    Andrews, D. N., and Weiner, N., 1979, Proc. West. Pharmacol. Soc. 22:163–167.PubMedGoogle Scholar
  25. 25.
    Raese, J. D., Edelman, A. M., Makk, G., Bruckwick, E. A., Lovenberg, W., and Barchas, J. D., 1979, Commun. Psychopharmacol. 3:295–301.PubMedGoogle Scholar
  26. 26.
    Yamauchi, T., Nakata, H., and Fujisawa, H., 1981, J. Biol. Chem. 256:5404–5409.PubMedGoogle Scholar
  27. 27.
    Weiner, N., 1970, Annu. Rev. Pharmacol. 10:273–290.PubMedCrossRefGoogle Scholar
  28. 28.
    Haycock, J. W., Bennett, W. F., George, R. J., and Waymire, J. C., 1982, J. Biol. Chem. 257:13699–13703.PubMedGoogle Scholar
  29. 29.
    Greengard, P., 1981, Harvey Lect. 75:277–331.Google Scholar
  30. 30.
    Ueda, T., and Greengard, P., 1977, J. Biol. Chem. 252:5155–5163.PubMedGoogle Scholar
  31. 31.
    Kennedy, M. B., and Greengard, P., 1981, Proc. Natl. Acad. Sci. U.S.A. 78:1293–1297.PubMedCrossRefGoogle Scholar
  32. 32.
    Forn, J., and Greengard, P., 1978, Proc. Natl. Acad. Sci. 75:5195–5199.PubMedCrossRefGoogle Scholar
  33. 33.
    Schulman, H., and Greengard, P., 1978, Nature 271:478–479.PubMedCrossRefGoogle Scholar
  34. 34.
    Bloom, F. E., Ueda, T., Battenberg, E., and Greengard, P., 1979, Proc. Natl. Acad. Sci. U.S.A. 76:5982–5986.PubMedCrossRefGoogle Scholar
  35. 35.
    Fried, G., Nestler, E. J., De Camilli, P., Stjarne, L., Olson, L., Lundberg, J. M., Hokfelt, T., Ouimet, C. C., and Greengard, P., 1982, Proc. Natl. Acad. Sci. U.S.A. 79:2717–2721.PubMedCrossRefGoogle Scholar
  36. 36.
    Schulman, H., and Greengard, P., 1978, Proc. Natl. Acad. Sci. U.S.A. 75:5432–5436.PubMedCrossRefGoogle Scholar
  37. 37.
    Tsou, K., and Greengard, P., 1982, Proc. Natl. Acad. Sci. U.S.A. 79:6075–6079.PubMedCrossRefGoogle Scholar
  38. 38.
    Nestler, E. J., and Greengard, P., 1982, Nature 296:452–454.PubMedCrossRefGoogle Scholar
  39. 39.
    Dolphin, H. C., and Greengard, P., 1981, Nature 289:76–79.PubMedCrossRefGoogle Scholar
  40. 40.
    Nestler, E. J., Zatz, M., and Greengard, P., 1982, Science 217:357–359.PubMedCrossRefGoogle Scholar
  41. 41.
    DeLorenzo, R. J., Freedman, S. D., Yohe, W. B., and Maurer, S. C., 1979, Proc. Natl. Acad. Sci. U.S.A. 76:1838–1842.PubMedCrossRefGoogle Scholar
  42. 42.
    Burke, B. E., and DeLorenzo, R. J., 1981, Proc. Natl. Acad. Sci. U.S.A. 78:991–995.PubMedCrossRefGoogle Scholar
  43. 43.
    Burke, B. E., and DeLorenzo, R. J., 1982, J. Neurochem. 38:1205–1218.PubMedCrossRefGoogle Scholar
  44. 44.
    Burke, B. E., and DeLorenzo, R. J., 1982, Brain Res. 236:393–415.PubMedCrossRefGoogle Scholar
  45. 45.
    Fukunaga, K., Yamamoto, H., Matsui, K., Higashi, K., and Miyamoto, E., 1982, J. Neurochem. 39:1607–1617.PubMedCrossRefGoogle Scholar
  46. 46.
    Grab, D. J., Carlin, R. K., and Siekevitz, P., 1981, J. Cell Biol. 89:433–439.PubMedCrossRefGoogle Scholar
  47. 47.
    Grab, D. J., Carlin, R. K., and Siekevitz, P., 1981, J. Cell. Biol. 89:440–448.PubMedCrossRefGoogle Scholar
  48. 48.
    Carlin, R. K., Grab, D. J., and Siekevitz, P., 1981, J. Cell. Biol. 89:449–455.PubMedCrossRefGoogle Scholar
  49. 49.
    Carlin, R. K., Bartelt, D. C., and Siekevitz, P., 1983, J. Cell. Biol. 96:443–448.PubMedCrossRefGoogle Scholar
  50. 50.
    Endo, T., and Hidaka, H., 1980, Biochem. Biophys. Res. Comm. 97:553–558.PubMedCrossRefGoogle Scholar
  51. 51.
    Turner, R. S., Chou, C. H. J., Kibler, R. F., and Kuo, J. F., 1982, J. Neurochem. 39:1397–1404.PubMedCrossRefGoogle Scholar
  52. 52.
    Sulakhe, P. V., Petrali, E. H., Davis, E. R., and Thiessen, B. J., 1980, Biochemistry 19:5363–5371.PubMedCrossRefGoogle Scholar
  53. 53.
    Prozialeck, W. C., and Weiss, B., 1982, J. Pharmacol. Exp. Ther. 222:509–516.PubMedGoogle Scholar
  54. 54.
    Tanaka, T., Ohmura, T., And Hidaka, H., 1982, Mol. Pharmacol. 22:403–407.PubMedGoogle Scholar
  55. 55.
    Finn, R. C., Browning, M., and Lynch, G., 1980, Neurosci. Lett. 19:103–108.PubMedCrossRefGoogle Scholar
  56. 56.
    Bar, P. R., Tielen, A. M., Lopes, D., Silva, F. H., Zwiers, H., and Gispen, W. H., 1982, Brain Res. 245:69–79.PubMedCrossRefGoogle Scholar
  57. 57.
    Lau, Y. S., and Gnegy, M. E., 1982, Life Sci. 30:21–28.PubMedCrossRefGoogle Scholar
  58. 58.
    O’Callaghan, J. P., Juskevich, J. C., and Lovenberg, W., 1982, J. Pharmacol. Exp. Ther. 220:696–702.PubMedGoogle Scholar
  59. 59.
    O’Callaghan, J. P., Miller, D. B., and Reiter, L. W., 1983, J. Pharmacol. Exp. Ther. 224:466–472.PubMedGoogle Scholar
  60. 60.
    Weiss, B., Prozialeck, W. C., and Wallace, T. L., 1982, Biochem. Pharmacol. 31:2217–2226.PubMedCrossRefGoogle Scholar
  61. 61.
    Brostrom, C. O., Huang, Y. C., Breckenridge, B. McL., and Wolff, D. J., 1975, Proc. Natl. Acad. Sci. U.S.A. 72:64–68.PubMedCrossRefGoogle Scholar
  62. 62.
    Chueng, W. Y., 1971, J. Biol. Chem. 246:2859–2869.Google Scholar
  63. 63.
    Robison, G. A., Butcher, R. W., and Sutherland, E. W., 1967, Ann. N.Y. Acad. Sci. 139:107.CrossRefGoogle Scholar
  64. 64.
    Rodbell, M., Birnbaumer, L., Pohl, S. L., and Krans, M. J., 1971, J. Biol. Chem. 246:1877–1882.PubMedGoogle Scholar
  65. 65.
    Stadel, J. M., Lean, A. D., and Lefkowitz, R. J., 1982, Adv. Enzymol 53:1–43.PubMedGoogle Scholar
  66. 66.
    Chueng, W. Y., Bradham, L. S., Lynch, T. J., Lin, Y. M., and Tallant, E. A., 1975, Biochem. Biophys. Res. Commun. 66:1055–1062.CrossRefGoogle Scholar
  67. 67.
    Gnegy, M. E., and Treisman, G., 1981, Apomorphine and Other Dopaminometics, Volume 1, Basic Pharmacology (G. L. Gessa and G. V. Corsini, eds.), Raven Press, New York, pp. 161–170.Google Scholar
  68. 68.
    Uzunov, P., and Weiss, B., 1972, Biochem. Biophys. Acta 284:220–226.PubMedCrossRefGoogle Scholar
  69. 69.
    Uzunov, P., Revuelta, A., and Costa, E., 1975, Mol. Pharmacol. 11:506–510.Google Scholar
  70. 70.
    Hanbauer, I., Gimble, J., and Lovenberg, W., 1979, Neuropharmacology 18:851–857.PubMedCrossRefGoogle Scholar
  71. 71.
    Gnegy, M. E., Nathanson, J. A., and Uzunov, P., 1977, Biochim. Biophys. Acta 497:75–85.PubMedCrossRefGoogle Scholar
  72. 72.
    Memo, M., Lovenberg, W., and Hanbauer, I., 1982, Proc. Natl. Acad. Sci. U.S.A. 79:4456–4460.PubMedCrossRefGoogle Scholar
  73. 73.
    Su, Y.-F., Harden, T. K., and Perkins, J. P., 1979, J. Biol. Chem. 254:38–41.PubMedGoogle Scholar
  74. 74.
    Chuang, D. M., and Costa, E., 1979, Proc. Natl. Acad. Sci. U.S.A. 76:3024.PubMedCrossRefGoogle Scholar
  75. 75.
    Memo, M., and Hanbauer, I., 1982, Fed. Proc. 41:6163.Google Scholar
  76. 76.
    Lucchelli, A., Guidotti, A., and Costa, E., 1978, Brain Res. 155:130–135.PubMedCrossRefGoogle Scholar
  77. 77.
    Gnegy, M. E., Uzunov, P., and Costa, E., 1977, J. Pharmacol. Exp. Ther. 202:558–564.PubMedGoogle Scholar
  78. 78.
    Hanbauer, I., Pradhan, S., and Yang, H.-Y. T., 1980, Ann. N.Y. Acad. Sci. 356:292–303.PubMedCrossRefGoogle Scholar
  79. 79.
    Gnegy, M. E., 1979, Catecholamines: Basic and Clinical Frontiers, Volume 1 (E. Usdin, J. Barchas, and I. J. Kopin, eds.), Pergamon Press, New York, pp. 577–579.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • M. Billingsley
    • 1
  • I. Hanbauer
    • 1
  • D. Kuhn
    • 1
  1. 1.Section on Biochemical PharmacologyNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaUSA

Personalised recommendations