Advertisement

Neurochemical Correlates of Learning Impairment

  • Yasuzo Tsukada

Abstract

Since neurobiological approaches to the elucidation of the mechanisms of learning and memory usually require the use of animal behaviors (conditioned reflexes, operant conditioning, etc.) as an essential tool for experimentation, studies in this field have been confronted with great difficulties, especially in quantitative analysis. When the historical breakthrough in the field of genetics revealed the role of DNA as the bearer of genetic information, neurobiologists also began to search for similar mechanisms of information processing involving base sequences of RNA and protein as memory-bearing substances in nerve cells. Others tried to analyze metabolic changes, especially of proteins and amino acids, in the brain of animals after learning.

Keywords

Conditioned Stimulus Discrimination Learning Learn Impairment Dwarf Mouse Brightness Discrimination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tsukada, Y., 1978, Shinkei Shinpo 22:1027–1042.Google Scholar
  2. 2.
    Tsukada, Y., Nomura, M., Nagai, K., Kohsaka, S., Kawahara, H., Ito, M., and Matsutani, T., 1977, Behavioral Neurochemistry (J. M. R. Delgado and F. V. Defeudis, eds.), Spectrum, New York, pp. 63–84.Google Scholar
  3. 3.
    Tsukada, Y., Takagaki, G., Sugimoto, S., and Hirano, S., 1958, J. Neurochem. 21:295–303.CrossRefGoogle Scholar
  4. 4.
    Tsukada, Y., 1966, Prog. Brain Res. 21A:268–291.CrossRefGoogle Scholar
  5. 5.
    Seiden, L. S., Brown, R. M., and Lewy, A. J., 1973, Chemical Modulation of Brain Functions, (H. C. Sabelli, ed.), Raven Press, New York, pp. 261–275.Google Scholar
  6. 6.
    Deutsch, J. A., 1973, The Physiological Basis of Memory (J. A. Deutsch, ed.), Academic Press, New York, pp. 59–76.Google Scholar
  7. 7.
    Dunn, A. J., Entingh, D., Entingh, T., Gispen, W. H., Machlus, B., Perumal, R., Rees, H. D., and Brogan, L., 1974, The Neurosciences, Third Study Program, (F. O. Schmitt and F. G. Worden, eds.), MIT Press, Cambridge, pp. 679–684.Google Scholar
  8. 8.
    Etingh, D., Damstra-Entingh, T., Dunn, A., Wilson, J. E., and Glassman, E., 1974, Brain Res. 70:131–138.CrossRefGoogle Scholar
  9. 9.
    Hydén, H., and Egyházi, E., 1962, Proc. Natl. Acad. Sci. U.S.A. 48:1366–1373.PubMedCrossRefGoogle Scholar
  10. 10.
    Hydén, H., and Egyházi, E., 1964, Proc. Natl. Acad. Sci. U.S.A. 52:1030–1035.PubMedCrossRefGoogle Scholar
  11. 11.
    Glassman, E., 1969, Annu. Rev. Biochem. 38:605–646.PubMedCrossRefGoogle Scholar
  12. 12.
    Glassman, E., and Wilson, J. E., 1970, Brain Res. 21:157–168.PubMedCrossRefGoogle Scholar
  13. 13.
    Bateson, P. P. G., Horn, G., and Rose, S. P. R., 1972, Brain Res. 39:449–465.PubMedCrossRefGoogle Scholar
  14. 14.
    Beach, G., Emmens, M., Kimble, D. P., and Lickey, M., 1969, Proc. Natl. Acad. Sci. U.S.A. 62:692–696.PubMedCrossRefGoogle Scholar
  15. 15.
    Hydén, H., and Lange, P. W., 1970, Exp. Cell Res. 62:125–132.PubMedCrossRefGoogle Scholar
  16. 16.
    Rees, H. D., Brogan, L. L., Entingh, D. J., Dunn, A., Shinkman, P. G., Damstra-Entingh, T., Wilson, J. E., and Glassman, E., 1974, Brain Res. 68:143–156.PubMedCrossRefGoogle Scholar
  17. 17.
    Hershkowitz, M., Wilson, J. E., and Glassman, E., 1975, J. Neurochem. 25:687–694.PubMedCrossRefGoogle Scholar
  18. 18.
    Bogoch, S., 1968, The Biochemistry of Memory, Oxford University Press, London, New York.Google Scholar
  19. 19.
    Semigonovsky, B., and Jakoubek, B., 1971, Brain Res. 35:319–323.CrossRefGoogle Scholar
  20. 20.
    Dunn, A. J., 1976, Neural Mechanisms of Learning and Memory (M. R. Rosenzweig and E. L. Bennett, eds.), MIT Press, Cambridge, pp. 311–320.Google Scholar
  21. 21.
    De Wied, D., and Gispen, W. H., 1977, Peptides in Neurobiology, (H. Gainer, ed.), Plenum Press, New York, pp. 397–448.CrossRefGoogle Scholar
  22. 22.
    Hess, E. H., 1974, Imprinting, Van Nostrand Reinhold, New York.Google Scholar
  23. 23.
    Bateson, P. P. G., Horn, G., and Rose, S. P. R., 1975, Brain Res. 84:207–220.PubMedCrossRefGoogle Scholar
  24. 24.
    Bateson, P. P. G., Horn, G., and Rose, S. P. R., 1972, Brain Res. 39:449–465.PubMedCrossRefGoogle Scholar
  25. 25.
    Bateson, P. P. G., Rose, S. P. R., and Horn, G., 1973, Science 181:576–578.PubMedCrossRefGoogle Scholar
  26. 26.
    Horn, G., McCabe, B. J., and Bateson, P. P. G., 1979, Brain Res. 168:361–373.PubMedCrossRefGoogle Scholar
  27. 27.
    Horn, G., Rose, S. P. R., and Bateson, P. P. G., 1973, Brain Res. 56:227–237.PubMedCrossRefGoogle Scholar
  28. 28.
    Rose, S. P. R., Bateson, P. P. G., Horn, A. L. D., and Horn, G., 1970, Nature 225:650–651.PubMedCrossRefGoogle Scholar
  29. 29.
    Rose, S. P. R., and Haywood, J., 1977, Biochemical Correlates of Brain Structure and Function (A. N. Davison, ed.), Academic Press, New York, pp. 249–292.Google Scholar
  30. 30.
    Rose, S. P. R., 1980, Neurobiological Basis of Learning and Memory (Y. Tsukada and B. W. Agranoff, eds.), John Wiley & Sons, New York, pp. 179–191.Google Scholar
  31. 31.
    Kohsaka, S., Takamatsu, K., Aoki, E., and Tsukada, Y., 1979, Brain Res. 172:539–544.PubMedCrossRefGoogle Scholar
  32. 32.
    Tsukada, Y., and Takamatsu, K., 1982, Excerpta Medica International Congress Series 620 (Proceedings of the Symposium on the Pharmacology of Learning and Memory), pp. 59-69.Google Scholar
  33. 33.
    Takamatsu, K., 1982, Keio Igaku 59:221–240.Google Scholar
  34. 34.
    Dingman, W., and Sporn, M. B., 1961, J. Psychiatr. Res. 1:1–11.PubMedCrossRefGoogle Scholar
  35. 35.
    Cohen, H. D., and Barondes, S. H., 1966, J. Neurochem. 13:207–211.PubMedCrossRefGoogle Scholar
  36. 36.
    Agranoff, B. W., Davis, R. E., Casola, L., and Lim, R., 1967, Science 158:1600–1601.PubMedCrossRefGoogle Scholar
  37. 37.
    Casola, L., Lern, R., Davis, R. E., and Agranoff, B. W., 1968, Proc. Natl. Acad. Sci. U.S.A. 60:1389–1395.PubMedCrossRefGoogle Scholar
  38. 38.
    Agranoff, B. W., Davis, R. E., and Brink, J. J., 1966, Brain Res. 1:303–309.PubMedCrossRefGoogle Scholar
  39. 39.
    Agranoff, B. W., 1980, Neurobiological Basis of Learning and Memory (Y. Tsukada and B. W. Agranoff, eds.), John Wiley & Sons, New York, pp. 135–147.Google Scholar
  40. 40.
    Flexner, J. B., and Flexner, L. B., 1971, Proc. Natl. Acad. Sci. U.S.A. 68:2519–2521.PubMedCrossRefGoogle Scholar
  41. 41.
    Gibbs, M. E., 1976, Pharmacol. Biochem. Behav. 4:305–309.PubMedCrossRefGoogle Scholar
  42. 42.
    Salzen, E. A., Parker, D. M., and Williamson, A. J., 1975, Brain Res. 24:145–157.Google Scholar
  43. 43.
    Salzen, E. A., Parker, D. M., and Williamson, A. J., 1978, Exp. Brain Res. 31:107–116.PubMedCrossRefGoogle Scholar
  44. 44.
    Flexner, J. B., Flexner, L. B., and Stellar, E., 1963, Science 141:57–59.PubMedCrossRefGoogle Scholar
  45. 45.
    Flexner, L. B., Flexner, J. B., De La Haba, G., and Roberts, R. B., 1965, J. Neurochem. 12:535–541.PubMedCrossRefGoogle Scholar
  46. 46.
    Barondes, S. H., 1970, Int. Rev. Neurobiol. 12:177–205.PubMedCrossRefGoogle Scholar
  47. 47.
    Eichenbaum, H., Quenon, B. A., Heacock, A. M., and Agranoff, B. W., 1976, Brain Res. 101:171–176.PubMedCrossRefGoogle Scholar
  48. 48.
    Murakami, T. H., 1980, Neurobiological Basis of Learning and Memory (Y. Tsukada and B. W. Agranoff, eds.), John Wiley & Sons, New York, pp. 165–178.Google Scholar
  49. 49.
    Watts, M. E., and Mark, R. F., 1971, Proc. R. Soc. Lond. [Biol.] 178:454–464.CrossRefGoogle Scholar
  50. 50.
    Murphy, D. L., and Redmond, D. E., Jr., 1975, Catecholamines and Behavior, Volume 2, Plenum Press, New York, pp. 73–104.Google Scholar
  51. 51.
    Essman, W. B., 1973, Current Biochemical Approaches to Learning and Memory, Spectrum, New York, pp. 159–188.Google Scholar
  52. 52.
    Kohsaka, S., Nagai, K., and Tsukada, Y., 1977, Bull. Jpn. Neurochem. Soc. 16:29–32.Google Scholar
  53. 53.
    Kohsaka, S., and Tsukada, Y., 1980, Neurobiological Basis of Learning and Memory, John Wiley & Sons, New York, pp. 149–164.Google Scholar
  54. 54.
    McConnell, J. V., 1966, Annu. Rev. Physiol. 28:107–136.PubMedCrossRefGoogle Scholar
  55. 55.
    Ungar, G., Desiderio, D. M., and Parr, W., 1972, Nature 238:198–202.PubMedCrossRefGoogle Scholar
  56. 56.
    Ungar, G., 1974, Life Sci. 14:595–604.PubMedCrossRefGoogle Scholar
  57. 57.
    Jolies, J., Aloyo, V. J., and Gispen, W. H., 1982, Molecular Approaches to Neurobiology (I. R. Brown, ed.), Academic Press, New York, pp. 285–316.Google Scholar
  58. 58.
    Kohsaka, S., and Tsukada, Y., 1979, Keio J. Med. 28:97–108.PubMedCrossRefGoogle Scholar
  59. 59.
    Tsukada, Y., Kohsaka, S., and Nagai, K., 1979, Proceedings International Nutrition Conference. Behavioral Effects of Energy and Protein Deficits, NIH Publication No. 79-1906, pp. 12-21.Google Scholar
  60. 60.
    Noguchi, T., Sugisaki, T., Watanabe, M., Tsukada, Y., and Tanabe, M., 1980, Growth and Growth Factors (K. Shizume and K. Takano, eds.), University of Tokyo Press, Tokyo, pp. 203–230.Google Scholar
  61. 61.
    Noguchi, T., Sugisaki, T., Watanabe, M., Kohsaka, S., and Tsukada, Y., 1982, J. Neurochem. 38:246–256.PubMedCrossRefGoogle Scholar
  62. 62.
    Matsutani, T., Nagayoshi, M., Tamaru, M., and Tsukada, Y., 1980, J. Neurochem. 34:950–956.PubMedCrossRefGoogle Scholar
  63. 63.
    Spatz, M., and Laqueur, G. L., 1968, Proc. Soc. Exp. Biol. Med. 129:705–710.PubMedGoogle Scholar
  64. 64.
    Matsumoto, H., Spatz, M., and Laqueur, G. L., 1972, J. Neurochem. 19:297–306.PubMedCrossRefGoogle Scholar
  65. 65.
    Johnston, M. V., and Coyle, J. T., 1980, J. Neurochem. 34:1429–1441.PubMedCrossRefGoogle Scholar
  66. 66.
    Johnston, M. V., Carman, A. B., and Coyle, J. T., 1981, J. Neurochem. 36:124–128.PubMedCrossRefGoogle Scholar
  67. 67.
    Kurihara, T., and Tsukada, Y., 1967, J. Neurochem. 14:1167–1174.PubMedCrossRefGoogle Scholar
  68. 68.
    Tsukada, Y., Nagai, K., and Suda, H., 1980, J. Neurochem. 34:1014–1017.CrossRefGoogle Scholar
  69. 69.
    Tsukada, Y., and Suda, H., 1980, Cell. Mol. Biol. 26:493–504.Google Scholar
  70. 70.
    Sims, N. R., and Carnegie, P. R., 1978, Adv. Neurochem. 3:1–41.CrossRefGoogle Scholar
  71. 71.
    Noguchi, T., Sugisaki, T., and Tsukada, Y., 1982, J. Neurochem. 38:257–263.PubMedCrossRefGoogle Scholar
  72. 72.
    Burton, K., 1956, Biochem. J. 62:315–323.PubMedGoogle Scholar
  73. 73.
    Schmidt, G., and Thannhauser, S. J., 1945, J. Biol. Chem. 161:83–89.PubMedGoogle Scholar
  74. 74.
    Kissane, J. M., and Robins, E., 1958, J. Biol. Chem. 233:184–188.PubMedGoogle Scholar
  75. 75.
    Tsukada, Y., Kishimoto, H., and Nagai, K., 1975, Contemporary Primatology, S. Karger, Basel, pp. 56–66.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Yasuzo Tsukada
    • 1
  1. 1.Department of PhysiologyKeio University School of MedicineTokyoJapan

Personalised recommendations