Advertisement

Cerebral Subsystems and Isolated Tissues

  • Henry McIlwain

Abstract

Parts of the brain, as of other organs of the animal body, can be remarkably autonomous. Survival of much of their functioning for a few hours can require only a minimal supply of materials. When relevant investigations began in the author’s laboratory in the 1940s, this was readily accepted with respect to coldblooded animals such as frogs and small fish, of which the almost intact, isolated brain remained electrically active when supplied with simple bathing solutions. Comparable success was not obtained with preparations from mammalian cerebral systems. However, parts of the brain from laboratory animals and from man had been employed for many years as tissue slices in studying other aspects of cerebral functioning, especially respiration and metabolite interconversion. This was extended first to the metabolic maintenance in tissue slices of their content of labile materials including ATP and phosphocreatine and second to the metabolic maintenance of gradients in Na+ and K+ ions between the tissues and bathing solutions. It was then shown that application to the tissues of fluctuating electrical potentials caused changes in the tissue content of the substances just described.1,2 The electrical stimuli led to breakdown of the labile compounds, to diminution of the concentration gradients, and to increase in the energy-yielding processes of respiration and glycolysis.

Keywords

Granule Cell Pyramidal Cell Rest Membrane Potential Tissue Slice Stratum Radiatum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McIlwain, H., 1956, Physiol. Rev. 36:355–375.PubMedGoogle Scholar
  2. 2.
    McIlwain, H., 1961, Methods Med. Res. 9:230–236.Google Scholar
  3. 3.
    McIlwain, H., Ayres, P. J. W., and Forda, O., 1952, J. Ment. Sci. 98:265–272.PubMedGoogle Scholar
  4. 4.
    McIlwain, H., 1975, Practical Neurochemistry (H. McIlwain, ed.), Churchill Livingstone, Edinburgh, pp. 105–207, 275-292.Google Scholar
  5. 5.
    McIlwain, H., 1975, The Nervous System, Volume 1 (D. B. Tower, ed.), Raven Press, New York, pp. 535–539.Google Scholar
  6. 6.
    Li, C.-L., and McIlwain, H., 1957, J. Physiol. (Lond.) 139:178–190.Google Scholar
  7. 7.
    Yamamoto, C., and McIlwain, H., 1966, J. Neurochem. 13:1333–1343.PubMedCrossRefGoogle Scholar
  8. 8.
    Lynch, G., and Schubert, P., 1980, Annu. Rev. Neurosci. 3:1–22.PubMedCrossRefGoogle Scholar
  9. 9.
    Kerkut, G. A., and Wheal, H. V. (eds.), 1981, Electrophysiology of Isolated Mammalian CNS Preparations, Academic Press, London.Google Scholar
  10. 10.
    Dingledine, R. (ed.), 1984, Brain Slices Plenum Press, New York.Google Scholar
  11. 11.
    McIlwain, H., and Bachelard, H. S., 1984, Biochemistry and the Central Nervous System, 5th edition, Churchill Livingstone, Edinburgh (in press).Google Scholar
  12. 12.
    Hounsgaard, J., and Yamamoto, C., 1979, Exp. Brain Res. 37:387–398.PubMedCrossRefGoogle Scholar
  13. 13.
    Yamamoto, C., and Sawada, S., 1981, Electrophysiology of Isolated Mammalian CNS Preparations (G. A. Kerkut and H. V. Wheal, eds.), Academic Press, London, pp. 233–255.Google Scholar
  14. 14.
    McIlwain, H., and Buddie, H. L., 1953, Biochem. J. 53:412–420.PubMedGoogle Scholar
  15. 15.
    Lee, K., Oliver, M., Schottler, F., and Lynch, G., 1981, Electrophysiology of Isolated Mammalian CNS Preparations (G. A. Kerkut and H. V. Wheal, eds.), Academic Press, London, pp. 189–211.Google Scholar
  16. 16.
    Garthwaite, J., Woodhouse, P. L., Collins, M. J., and Balazs, R., 1979, Brain Res. 173:373–377.PubMedCrossRefGoogle Scholar
  17. 17.
    Ames, A. III., 1981, J. Neurochem. 37:867–877.PubMedCrossRefGoogle Scholar
  18. 18.
    Gibson, I. M., and McIlwain, H., 1965, J. Physiol. (Lond.) 176:261–283.Google Scholar
  19. 19.
    Heller, I. H., and McIlwain, H., 1973, Brain Res. 53:105–116.PubMedCrossRefGoogle Scholar
  20. 20.
    McIlwain, H., and Snyder, S. H., 1970, J. Neurochem. 17:521–530.PubMedCrossRefGoogle Scholar
  21. 21.
    Kakiuchi, S., Rall, T. W., and McIlwain, H., 1969, J. Neurochem. 16:485–491.PubMedCrossRefGoogle Scholar
  22. 22.
    Williams, M., and Rodnight, R., 1977, Prog. Neurobiol. 8:183–250.CrossRefGoogle Scholar
  23. 23.
    Daly, J. W., 1977, Cyclic Nucleotides in the Nervous System, Plenum Press, New York.CrossRefGoogle Scholar
  24. 24.
    McIlwain, H., 1979, Physiological and Regulatory Functions of Adenosine and Adenine Nucleotides (H. P. Baer and G. I. Drummond, eds.), Raven Press, New York, pp. 361–367.Google Scholar
  25. 25.
    Hillman, H. H., and McIlwain, H., 1961, J. Physiol. (Lond.) 157:263–278.Google Scholar
  26. 26.
    Campbell, W. J., McIlwain, H., Richards, C. D., and Somerville, A. R., 1967, J. Neurochem. 14:937–938.CrossRefGoogle Scholar
  27. 27.
    Cohen, M. M., 1973, Biochemistry, Ultrastructure and Physiology of Cerebral Anoxia, Hypoxia and Ischemia, Karger, Basel.Google Scholar
  28. 28.
    Jones, D. H., Gray, E. G., and Barron, J., 1980, J. Neurocytol. 9:493–504.PubMedCrossRefGoogle Scholar
  29. 29.
    Newman, M., and McIlwain, H., 1978, Biochem. J. 170:73–79.PubMedGoogle Scholar
  30. 30.
    Hillman, H. H., Campbell, W. J., and McIlwain, H., 1963, J. Neurochem. 10:325–339.CrossRefGoogle Scholar
  31. 31.
    Bradford, H. F., and McIlwain, H., 1966, J. Neurochem. 13:1163–1177.PubMedCrossRefGoogle Scholar
  32. 32.
    Yamamoto, C., and Kawai, N., 1967. Exp. Neurol. 19:176–187.PubMedCrossRefGoogle Scholar
  33. 33.
    Miller, J. J., 1981, Electrophysiology of Isolated Mammalian CNS Preparations (G. A. Kerkut and H. V. Wheal, eds.), Academic Press, London, pp. 309–336.Google Scholar
  34. 34.
    Richards, C. D., and McIlwain, H., 1967, Nature 215:704–707.PubMedCrossRefGoogle Scholar
  35. 35.
    McIlwain, H., 1981, Purinergic Receptors (G. Burnstock, ed.), Chapman & Hall, London, pp. 163–198.CrossRefGoogle Scholar
  36. 36.
    Keller, E., and Cummins, J. T., 1980, J. Neurochem. 35:1329–1334.PubMedCrossRefGoogle Scholar
  37. 37.
    Harvey, J. A., Scholefield, C. N., and Brown, D. A., 1974, Brain Res. 76:235–245.PubMedCrossRefGoogle Scholar
  38. 38.
    Scholefield, C. N., 1978, J. Physiol. (Lond.) 275:547–557, 559-566.Google Scholar
  39. 39.
    Yamamoto, C., 1972, Exp. Brain Res. 14:423–435.PubMedCrossRefGoogle Scholar
  40. 40.
    Yamamoto, C., 1972, Exp. Neurol. 35:154–164.PubMedCrossRefGoogle Scholar
  41. 41.
    Assaf, S. Y., Crunelli, V., and Kelly, J. S., 1981, Electrophysiology of Isolated Mammalian CNS Preparations (G. A. Kerkut and H. V. Wheal, eds.), Academic Press, London, pp. 153–188.Google Scholar
  42. 42.
    Bachelard, H. S., and Cox, D. W. G., 1981, J. Physiol. (Lond.) 317:62–64PGoogle Scholar
  43. 42a.
    Cox, D. W. G., and Bachelard, H. S., 1982, Brain Res. 239:527–534.PubMedCrossRefGoogle Scholar
  44. 43.
    Schwartzkroin, P. A., 1981, Electrophysiology of Isolated Mammalian CNS Preparations (G. A. Kerkut and H. V. Wheal, eds.), Academic Press, London, pp. 15–50.Google Scholar
  45. 44.
    Langmoen, I. A., and Andersen, P., 1981, Electrophysiology of Isolated Mammalian CNS Preparations (G. A. Kerkut and H. V. Wheal, eds.), Academic Press, London, pp. 51–105.Google Scholar
  46. 45.
    Wieraszko, A., and Lynch, G., 1979, Brain Res. 160:372–376.PubMedCrossRefGoogle Scholar
  47. 46.
    Yamamoto, C., Matsumoto, K., and Takagi, M., 1980, Exp. Brain Res. 38:469–477.PubMedCrossRefGoogle Scholar
  48. 47.
    Schwartzkroin, P., and Wesker, K., 1975, Brain Res. 89:107–119.PubMedCrossRefGoogle Scholar
  49. 48.
    Andersen, P., Sundberg, S. H., Sveen, O., and Wigstrom, H., 1977, Nature 266:736–737.PubMedCrossRefGoogle Scholar
  50. 49.
    Kawai, N., and Yamamoto, C., 1969, Int. J. Neuropharmacol. 8:437–449.PubMedCrossRefGoogle Scholar
  51. 50.
    Godfraind, J. M., and Kelly, J. S., 1981, Electrophysiology of Isolated Mammalian CNS Preparations (G. A. Kerkut and H. V. Wheal, eds.), Academic Press, London, pp. 257–284.Google Scholar
  52. 51.
    Krebs, H. A., 1981, Otto Warburg: Cell Physiologist, Biochemist, Eccentric, Clarendon, Oxford.Google Scholar
  53. 52.
    McIlwain, H., 1978, Prog. Neurobiol. 11:189–203.PubMedCrossRefGoogle Scholar
  54. 53.
    McIlwain, H., 1980, Neuroscience 5:1393–1411.PubMedCrossRefGoogle Scholar
  55. 54.
    Cuello, A. C., and Carson, S., 1983, Brain Microdissection Techniques, IBRO Handbook Series, Volume 2, Wiley, Chidester.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Henry McIlwain
    • 1
  1. 1.Department of BiochemistrySt. Thomas’s Hospital Medical SchoolLondonEngland

Personalised recommendations