Molecular Biology of Varicella—Zoster Virus

  • Richard W. Hyman
Part of the The Viruses book series (VIRS)


Varicella—zoster virus (VZV) is a human herpesvirus that causes two common clinical conditions: chicken pox (varicella) and shingles (herpes zoster). Virus isolated from patients with either disease is indistinguishable immunologically and biologically from virus isolated from patients with the other disease (reviewed by Taylor-Robinson and Caunt, 1972). Earlier experiments had established that vesicular fluid from patients with herpes zoster could cause varicella when injected into children. For example, Bruusgaard (1932) injected vesicular fluid from 5 herpes zoster patients into the arms of a total of 18 children; 4 of the 18 showed local vesicles and another 4 showed a more generalized vesicle spread. For these reasons, the earlier terms varicella virus and herpes zoster virus have been supplanted by the term varicella—zoster virus.


Herpes Simplex Virus Type Herpes Zoster Buoyant Density Herpes Zoster Patient Phosphonoacetic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asano, Y., and Takahashi, M., 1979, Studies on the polypeptides of varicella—zoster (V-Z)virus. I. Detection of varicella—zoster virus polypeptides in infected cells, Biken J. 22: 81.PubMedGoogle Scholar
  2. Aswell, J., and Gentry, G., 1977, Cell-dependent antiherpesviral activity of 5-methylarabinosylcytosine, an intracellular ara-T donor, Ann. N.Y. Acad. Sci. 284: 342.PubMedCrossRefGoogle Scholar
  3. Ben-Porat, T., Demarchi, J.M., and Kaplan, A., 1974, Characterization of defective interfering viral particles present in a population of pseudorabies virions, Virology 61: 29.PubMedCrossRefGoogle Scholar
  4. Bronson, D.L., Dreesman, G.R., Biswal, N., and Benyesh-Melnick, M., 1973, Defective virions of herpes simplex viruses, Intervirology 1: 141.PubMedCrossRefGoogle Scholar
  5. Bruusgaard, E., 1932, The mutual relation between zoster and varicella, Br. J. Dermatol. Syph. 44: 1.CrossRefGoogle Scholar
  6. Cambell, D., Kemp, M., Perdue, M., Randall, C., and Gentry, G., 1976, Equine herpesvirus in vivo: Cyclic production of a DNA density variant with repetitive sequence, Virology 69: 737.CrossRefGoogle Scholar
  7. Cheng, Y.-C., Tsou, T., Hackstadt, T., and Mallavia, L., 1979, Induction of thymidine kinase and DNase in varicella—zoster virus-infected cells and kinetic properties of the virus-induced thymidine kinase, J. Virol. 31: 172.PubMedGoogle Scholar
  8. Delius, H., and Bornkamm, G., 1978, Heterogeneity of Epstein—Barr virus. III. Comparison of a transforming and a non-transforming virus by partial denaturation mapping of their DNAs, J. Virol. 27: 81.PubMedGoogle Scholar
  9. Delius, H., and Clements, J.B., 1976, A partial denaturation map of herpes simplex virus type 1 DNA: Evidence for inversions of the unique DNA regions, J. Gen. Virol. 33: 125.PubMedCrossRefGoogle Scholar
  10. Dobersen, M., Jerkofsky, M., and Greer, S., 1976, Enzymatic basis for the selective inhibition of varicella—zoster virus by 5-halogenated analogues of deoxycytidine, J. Virol. 20: 478.PubMedGoogle Scholar
  11. Dumas, A.M., Geelen, J.L.M., Maris, W., and van der Noordaa, J., 1980, Infectivity and molecular weight of varicella—zoster virus DNA, J. Gen. Virol. 47:233.CrossRefGoogle Scholar
  12. Ecker, J.R., and Hyman, R.W., 1981a, Analysis of interruptions in the phosphodiester backbone of herpes simplex virus DNA, Virology 110: 213.PubMedCrossRefGoogle Scholar
  13. Ecker, J.R., and Hyman, R.W., 1981b, Varicella—zoster virus vaccine DNA differs from the parental virus DNA, J. Virol. 40: 314.PubMedGoogle Scholar
  14. Ecker, J.R., and Hyman, R.W., 1982, Varicella—zoster virus DNA exists as two isomers Proc. Natl. Acad. Sci. U.S.A. 79: 156.PubMedCrossRefGoogle Scholar
  15. Feldman, S., Hughes, W.T., and Daniel, C.B., 1975, Varicella in children with cancer: Seventy-seven cases, Pediatrics 56: 388.PubMedGoogle Scholar
  16. Fioretti, A., Iwasaki, Y., Furukawa, T., and Plotkin, S., 1973, The growth of varicella—zoster virus in guinea pig embryo cells, Proc. Soc. Exp. Biol. Med. 44: 340.Google Scholar
  17. Frenkel, N.R., Jacob, R.J., Honess, R.W., Hayward, C.S., Locker, H., and Roizman, B., 1975, The anatomy of herpes simplex virus DNA. III. Characterization of defective DNA molecules and biological properties of virus populations containing them, J. Virol. 16: 153.PubMedGoogle Scholar
  18. Gilden, D., Wroblewska, Z., Kindt, V., Warren, K., and Wolinsky, J., 1978, Varicella—zoster virus infection of human brain cells and ganglion cells in tissue culture, Arch. Virol. 56: 105.PubMedCrossRefGoogle Scholar
  19. Given, D., and Kieff, E., 1978, DNA of Epstein—Barr virus. IV. Linkage map of restriction enzyme fragments of the B95-8 and W91 strains of Epstein—Barr virus, J. Virol. 28: 524.PubMedGoogle Scholar
  20. Graham, B, Bengali, Z., and Vande Woude, G., 1978, Physical map of the origin of defective DNA in herpes simplex virus type 1 DNA, J. Virol. 25: 878.PubMedGoogle Scholar
  21. Grose, C., 1980, The synthesis of glycoprotein in human melanoma cells infected with varicella-zoster virus, Virology 101: 1.PubMedCrossRefGoogle Scholar
  22. Grose, C., Perrotta, D., Brunell, P., and Smith, G., 1979, Cell-free varicella—zoster virus in cultured human melanoma cells, J. Gen. Virol. 43: 15.PubMedCrossRefGoogle Scholar
  23. Hackstadt, T., and Mallavia, L., 1978, Deoxypyrimidine nucleoside metabolism in varicella—zoster virus-infected cells, J. Virol. 25: 510.PubMedGoogle Scholar
  24. Harbour, D., and Caunt, A., 1975, Infection of guinea pig embryo cells with varicella—zoster virus, Arch. Virol. 49: 39.PubMedCrossRefGoogle Scholar
  25. Hayward, G.S., Jacob, R.J., Wadsworth, S.C., and Roizman, B., 1975, Anatomy of herpes simplex virus DNA: Evidence for four populations of molecules that differ in the relative orientations of their long and short components, Proc. Natl. Acad. Sci. U.S.A. 72: 4243.PubMedCrossRefGoogle Scholar
  26. Hyman, R.W., Oakes, J.E., and Kudler, L., 1977, In vitro repair of the pre-existing nicks and gaps in herpes simplex virus DNA, Virology 76: 286.PubMedCrossRefGoogle Scholar
  27. Iltis, J.P., Oakes, J.E., Hyman, R.W., and Rapp, F., 1977, Comparison of the DNAs of varicella—zoster viruses isolated from clinical cases of varicella and herpes zoster, Virology 82: 345.PubMedCrossRefGoogle Scholar
  28. Iltis, J., Lin, T.-S., Prusoff, W., and Rapp, F., 1979, Effect of 5-iodo-5'-amino-2',5'-dideox-yuridine on varicella—zoster virus in vitro, Antimicrob. Agents Chemother. 16: 92.PubMedGoogle Scholar
  29. Ito, M., and Barron, A., 1973, Surface antigens produced by herpesviruses: Varicella—zoster virus, Infect. Immun. 8: 48.PubMedGoogle Scholar
  30. Kieff, E.D., Bachenheimer, S.L., and Roizman, B., 1971, Size, composition, and structure of the deoxyribonucleic acid of herpes simplex virus subtypes 1 and 2, J. Virol. 8: 125.PubMedGoogle Scholar
  31. Locker, H., and Frenkel, N., 1979, Structure and origin of defective genomes contained in serially passaged herpes simplex virus type 1 (Justin), J. Virol. 29: 1065.PubMedGoogle Scholar
  32. Ludwig, H., Haines, H.G., Biswal, N., and Benyesh-Melnick, M., 1972, The characterization of varicella—zoster virus DNA J. Gen. Virol. 14: 111.PubMedCrossRefGoogle Scholar
  33. Mar, E.-C., Huang, Y.-S., and Huang, E.-S., 1978, Purification and characterization of varicella—zoster virus-induced DNA polymerase, J. Virol. 26: 249.PubMedGoogle Scholar
  34. May, D., Miller, R., and Rapp, F., 1977, The effect of phosphonoacetic acid on the in vitro replication of varicella—zoster virus, Intervirology 8: 83.PubMedCrossRefGoogle Scholar
  35. Miller, R., and Rapp, F., 1977, Varicella—zoster virus-induced DNA polymerase, J. Gen. Virol. 36: 515.PubMedCrossRefGoogle Scholar
  36. Miller, R., Iltis, J., and Rapp, F., 1977, Differential effect of arabinofuranosylthymine on the replication of human herpesviruses, J. Virol. 23: 679.PubMedGoogle Scholar
  37. Oakes, J.E., Iltis, J. P., Hyman, R.W., and Rapp, F., 1977, Analyses by restriction enzyme cleavage of human varicella—zoster virus DNAs, Virology 82: 353.PubMedCrossRefGoogle Scholar
  38. Ogino, T., Otsuka, T., and Takahashi, M., 1977, Induction of deoxypyrimidine kinase activity in human embryonic lung cells infected with varicella—zoster virus, J. Virol. 21: 1232.PubMedGoogle Scholar
  39. Preblud, S., and D'Angelo, L., 1979, Chicken pox in the United States, 1972-1977, J. Infect. Dis. 140: 257.PubMedCrossRefGoogle Scholar
  40. Rapp, F., Iltis, J., Oakes, J., and Hyman, R.W., 1977, A novel approach to study the DNA of herpes zoster virus, Intervirology 8: 272.PubMedCrossRefGoogle Scholar
  41. Richards, J., Hyman, R.W., and Rapp, F., 1979, Analysis of the DNAs from seven varicella—zoster virus isolates, J. Virol. 32: 812.PubMedGoogle Scholar
  42. Roizman, B., 1979, The structure and isomerization of herpes simplex virus genomes, Cell 16: 481.PubMedCrossRefGoogle Scholar
  43. Rymo, L., and Forsblom, S., 1978, Cleavage of Epstein—Barr virus DNA by restriction endonucleases EcoRI, HindfII and BamI, Nucleic Acids Res. 5: 1387.PubMedCrossRefGoogle Scholar
  44. Schildkraut, C.L., Marmur, J., and Doty, P., 1962, Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCI, J. Mol. Biol. 4: 430.PubMedCrossRefGoogle Scholar
  45. Skare, J., and Summers, W., 1977, Structure and function of herpesvirus genomes. II. EcoRI, Xbal and HindfII endonuclease cleavage sites on herpes simplex virus type 1 DNA, Virology 76: 581.PubMedCrossRefGoogle Scholar
  46. Skare, J., Summers, W., and Summers, W., 1975, Structure and function of herpesvirus genomes. I. Comparison of five HSV-1 and two HSV-2 strains by cleavage of their DNA with EcoRI restriction endonuclease, J. Virol. 15: 726.PubMedGoogle Scholar
  47. Stinski, M., Mocarski, E., and Thomsen, D., 1979, DNA of human cytomegalovirus: Size heterogeneity and defectiveness resulting from serial undiluted passage, J. Virol 31: 231.PubMedGoogle Scholar
  48. Sugden, B., Summers, W., and Klein, G., 1976, Nucleic acid renaturation and restriction endonuclease cleavage analyses show that the DNAs of a transforming and non-transforming strain of Epstein—Barr virus share approximately 90% of their nucleotide sequences, J. Virol. 18: 765.PubMedGoogle Scholar
  49. Takahashi, M., Okuno, Y., Otsuka, T., Osame, J., Takamizawa, A., Sasada, T., and Kubo, T., 1975, Development of a live attenuated varicella vaccine, Biken J. 18: 25.PubMedGoogle Scholar
  50. Taylor-Robinson, D., and Caunt, A.E., 1972, The varicella virus, Virology Monographs, Vol. 12, Springer-Verlag, Vienna.Google Scholar
  51. Wagner, M., Skare, J., and Summers, W.C., 1975, Analysis of DNA of defective herpes simplex virus type 1 by restriction endonuclease cleavage and nucleic acid hybridization, Cold Spring Harbor Symp. Quant. Biol. 39: 683.PubMedCrossRefGoogle Scholar
  52. Weller, T., Witton, H., and Bell, E., 1958, The etiologic agents of varicella and herpes zoster: Isolation, propagation and cultural characteristics in vitro, J. Exp. Med. 108: 843.PubMedCrossRefGoogle Scholar
  53. Wilkie, N.M., 1973, The synthesis and substructure of herpesvirus DNA: The distribution of alkali-labile single strand interruptions in HSV-1 DNA, J. Gen. Virol. 21: 453.PubMedCrossRefGoogle Scholar
  54. Wilkie, N.M., and Cortini, R., 1976, Sequence arrangement in herpes simplex virus type 1 DNA: Identification of terminal fragments in restriction endonuclease digests and evidence for inversions in redundant and unique sequences, J. Virol. 20: 211.PubMedGoogle Scholar
  55. Wilkie, N.M., Clements, J.B., MacNab, J.C.M., and Subak-Sharpe, J.H., 1975, The structure and biological properties of herpes simplex virus DNA, Cold Spring Harbor Symp. Quant. Biol. 39: 657.PubMedCrossRefGoogle Scholar
  56. Wolff, M., 1978, The proteins of varicella—zoster virus, Med. Microbiol. Immunol. 166: 21.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Richard W. Hyman
    • 1
  1. 1.Department of Microbiology and Cancer Research CenterThe Pennsylvania State University College of MedicineHersheyUSA

Personalised recommendations