Photoactivation of Enzymes

  • Daniel H. Hug


The molecular basis for the transduction of a light stimulus to a biological response has not been fully explained in any organism. Vision, photomotion, photoperiodism, photomorphogenesis, and photoregulation of rhythms are examples of responses currently under investigation. Amplification is necessary to increase the light signal adequately to give the observed response. Galston (1974) named four biological components that might form the basis for amplification: membrane, hormone, gene, and enzyme.


Nitrate Reductase Pineal Gland Nitrate Reductase Activity Light Activation Visual Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam, W., and Cilento, G. (eds.), 1979, Chemi-and bioenergized processes, Photochem. Photobiol. 30:1–198.CrossRefGoogle Scholar
  2. Aizawa, M., Namba, K., and Suzuki, S., 1977a, Photo control of enzyme activity of α amylase, Arch. Biochem. Biophys. 180:41–48.CrossRefGoogle Scholar
  3. Aizawa, M., Namba, K., and Suzuki, S., 1977b, Light-induced enzyme activity changes associated with the photoisomerization of bound spiropyran, Arch. Biochem. Biophys. 182:305–310.CrossRefGoogle Scholar
  4. Alfonzo, R., and Nelson, N., 1979, A light-dependent protein kinase activity of thylakoid membranes, Fed. Proc. 38:333.Google Scholar
  5. Ananthaswamy, H. N., Fisher, M. S., and Kripke, M. L., 1980, Photoreactivation of UV-induced pyrimidine dimers in neonatal BALB/C mouse skin, Abstr. Am. Soc. Photobiol. 8:67.Google Scholar
  6. Anderson, L. E., and Avron, M., 1976, Light modulation of enzyme activity in chloroplasts. Generation of membrane-bound vicinal-dithiol groups by photosynthetic electron transport, Plant Physiol. 57:209–213.CrossRefGoogle Scholar
  7. Anderson, L. E., Chin, H.-M., and Gupta, V. K., 1979, Modulation of chloroplast fructose1,6-bisphosphatase activity by light, Plant Physiol. 64:491–494.CrossRefGoogle Scholar
  8. Anderson, R. R., Flicker, W., Roberts, J., and Parrish, J. A., 1980, In vitro and in vivo photodissociation of carboxyhemoglobin in whole blood, Abstr. Am. Soc. Photobiol. 8:138.Google Scholar
  9. Antranikian, G., Giffhorn, F., and Gottschalk, G., 1978, Activation and inactivation of citrate lyase ligase from Rhodopseudomonas gelatinosa, FEBS Lett. 88:67–70.CrossRefGoogle Scholar
  10. Augusto, O., Cilento, G., Jung, J., and Song, P.-S., 1978, Phototransformation of phytochrome in the dark, Biochem. Biophys. Res. Commun. 83:963–969.CrossRefGoogle Scholar
  11. Bachrach, U., 1976, Polyamines as chemical markers of malignancy, Ital. J. Biochem. (Engl. Ed.) 25:77–93.Google Scholar
  12. Bahr, J. T., and Jensen, R. G., 1978, Activation of ribulose bisphosphate carboxylase in intact chloroplasts by CO2 and light, Arch. Biochem. Biophys. 185:39–48.CrossRefGoogle Scholar
  13. Balasubramanian, D., Subramani, S., and Kumar, C. 1975, Modification of a model membrane structure by embedded photochrome, Nature (London) 254:252–254.CrossRefGoogle Scholar
  14. Baltscheffsky, M., and Lundin, A., 1979, Flash-induced increase of ATPase activity in Rhodospirillum rubrum chromatophores, Cation Flux Biomembr.,pp. 209-218.Google Scholar
  15. Bass, G. E., and Chenevey, J. E., 1976, Irradiation induced rate enhancements for the LDH-pyruvate reaction, Int. J. Quantum Chem.: Quantum Biol. Symp. 3:247–250.Google Scholar
  16. Bass, G. E., and Chenevey, J. E., 1977, Substrate irradiation stimulation of the in vitro lactate-pyruvate interconversion reactions mediated by lactic dehydrogenase, Physiol. Chem. Phys. 9:555–562.Google Scholar
  17. Baugher, J. F., and Grossweiner, L. I., 1975, Ultraviolet inactivation of papain, Photochem. Photobiol. 22:163–167.CrossRefGoogle Scholar
  18. Bechara, E. J. H., Oliveira, O. M. M. F., Durán, N., Casadei de Baptista, R., and Cilento, G., 1979, Peroxidase catalyzed generation of triplet acetone, Photochem. Photobiol. 30:101–110.CrossRefGoogle Scholar
  19. Bennett, J., 1979, Chloroplast phosphoproteins. The protein kinase of thylakoid membranes is light-dependent, FEBS Lett. 103:342–344.CrossRefGoogle Scholar
  20. Benveniste, I., Salaiin, J.-P., and Durst, F., 1978, Phytochrome-mediated regulation of a monooxygenase hydroxylating cinnamic acid in etiolated pea seedlings, Phytochemistry 17:359–363.CrossRefGoogle Scholar
  21. Berezin, I. V., Varfolomeyev, S. D., and Martinek, K., 1970, A flash-induced reaction of a synthetic light-sensitive substrate with α-chymotrypsin, FEBS Lett. 8:173–175.CrossRefGoogle Scholar
  22. Betz, B., Schäfer, E., and Hahlbrock, K., 1978, Light-induced Phenylalanine ammonialyase in cell-suspension cultures of Petroselinum hortense. Quantitative comparison of rates of synthesis and degradation, Arch. Biochem. Biophys. 190:126–135.CrossRefGoogle Scholar
  23. Bignetti, E., Cavaggioni, A., and Sorbi, R. T., 1978, Light-activated hydrolysis of GTP and cyclic GMP in the rod outer segments, J. Physiol. 279:55–69.Google Scholar
  24. Binkley, S., 1976, Pineal gland biorhythms: N-acetyltransferase in chickens and rats, Fed. Proc. 35:2347–2352.Google Scholar
  25. Binkley, S. A., Riebman, J. B., and Reilly, K. B., 1978, The pineal gland: A biological clock in vitro, Science 202:1198–1201.CrossRefGoogle Scholar
  26. Bitensky, M. W., Wheeler, G. L., Aloni, B., Vetury, S., and Matuo, Y., 1978, Light-and GTP-activated photoreceptor Phosphodiesterase: Regulation by a light-activated GTPase and identification of rhodopsin as the Phosphodiesterase binding site, Adv. Cyclic Nucleotide Res. 9:553–572.Google Scholar
  27. Bogorad, L., Apel, K., and Haff, L. A. 1977, DNA-dependent RNA polymerases of Zea mays and plastid RNA metabolism, Colloq. Int. C.N.R.S. 1976 261(Acides Nucléiques Synth. Protéines Vég.): 169-177.Google Scholar
  28. Bose, S. K., Gest, H., and Ormerod, J. G., 1961, Light-activated hydrogenase activity in a photosynthetic bacterium: A permeability phenomenon, J. Biol. Chem. 236: PC13–PC14.Google Scholar
  29. Bownds, D., Dawes, J., Miller J., and Stahlman, M., 1972, Phosphorylation of frog photoreceptor membranes induced by light, Nature (London), New Biol. 237:125–127.Google Scholar
  30. Bownds, D., Brodie, A., Robinson, W. E., Palmer, D., Miller, J., and Shedlovsky, A., 1974, Physiology and enzymology of frog photoreceptor membranes, Exp. Eye Res. 18:253–269.CrossRefGoogle Scholar
  31. Bradbeer, J. W., Hargrave, D. F., and Langman, L., 1978, The photomorphogenetic control of the development of plastid glyceraldehyde-phosphate dehydrogenase and phosphoribulokinase activities in cotyledons of mustard seedlings, Photochem. Photiobiol. 27:183–187.CrossRefGoogle Scholar
  32. Breazeale, V. D., Buchanan, B. B., and Wolosiuk, R. A., 1978, Chloroplast sedoheptulose 1,7-biphosphatase: Evidence for regulation by the ferredoxin/thioredoxin system, Z. Naturforsch. 33:521–528.Google Scholar
  33. Brodie, A. E., and Bownds, D., 1976, Biochemical correlates of adaptation processes in isolated frog photoreceptor membranes, J. Gen. Physiol. 68:1–11.CrossRefGoogle Scholar
  34. Buchanan, B. B., Crawford, N. A., and Wolosiuk, R. A., 1978, Ferredoxin/thioredoxin system functions with effectors in activation of NADP-glyceraldehyde 3-phosphate dehydrogenase of barley seedlings, Plant Sci. Lett. 12:257–264.CrossRefGoogle Scholar
  35. Buchanan, B. B., Wolosiuk, R. A., and Schuermann, P., 1979, Thioredoxin and enzyme regulation, Trends Biochem. Sci. (Pers. Ed.) 4:93–96.CrossRefGoogle Scholar
  36. Butler, W. L., Norris, K. H., Siegelman, H. W., and Hendricks, S. B., 1959, Detection, assay, and preliminary purification of the pigment controlling photoresponsive development of plants, Proc. Natl. Acad. Sci. U.S.A. 45:1703–1708.CrossRefGoogle Scholar
  37. Carretta, A., and Cavaggioni, A., 1976, On the metabolism of the rod outer segments, J. Physiol. 257:687–697.Google Scholar
  38. Cohen, R. J., 1974, Cyclic AMP levels in Phycomyces during a response to light, Nature (London) 251:144–146.CrossRefGoogle Scholar
  39. Cohen, R. J., and Atkinson, M. M., 1978, Activation of Phycomyces adenosine 3′,5′-monophosphate Phosphodiesterase by blue light, Biochem. Biophys. Res. Commun. 83:616–621.CrossRefGoogle Scholar
  40. Comorosan, S., 1975, The measurement process in biological systems: A new phenomenology, J. Theor. Biol. 51:35–49.CrossRefGoogle Scholar
  41. Comorosan, S., 1976, Biological observables, Prog. Theor. Biol. 4:161–204.Google Scholar
  42. Constantopoulos, A., Karaboula, K., and Matsaniotis, N., 1977, Lack of effect of phototherapy on plasma cyclic-AMP in newborn infants, Arch. Dis. Child 52:416–417.CrossRefGoogle Scholar
  43. Dacou-Voutetakis, C., Anagnostakis, D., and Matsaniotis, N., 1978, Effect of prolonged illumination (phototherapy) on concentrations of luteinizing hormone in human infants, Science 199:1229–1231.CrossRefGoogle Scholar
  44. Daley, L. S., Dailey, F., and Criddle, R. S., 1978, Light activation of ribulose bisphosphate carboxylase. Purification and properties of the enzyme in tobacco, Plant Physiol. 62:718–722.CrossRefGoogle Scholar
  45. De Azeredo, F. A. M., Lust, W. D., and Passonneau, J. V., 1978, Guanine nucleotide concentrations in vivo in outer segments of dark and light adapted frog retina, Biochem. Biophys. Res. Commun., 85:293–300.CrossRefGoogle Scholar
  46. Deguchi, T., 1979, Circadian rhythm of serotonin N-acetyltransferase activity in organ culture of chicken pineal gland, Science 203:1245–1247.CrossRefGoogle Scholar
  47. Deitzer, G. F., Hopkins, D. W., Haertlé, U., and Wagner, E., 1978, Effect of light on oscillations of enzyme activity during photomorphogenesis in Chenopodium rubrum L., Photochem. Photobiol. 27:127–131.CrossRefGoogle Scholar
  48. Diamond, J., Schiff, J. A., and Keiner, A., 1975, Photoreactivating enzyme from Euglena and the control of its intracellular level, Arch. Biochem. Biophys. 167:603–614.CrossRefGoogle Scholar
  49. Duke, S. H., and Duke, S. O., 1978, In vitro nitrate reductase activity and in vivo phytochrome measurements of maize seedlings as affected by various light treatments, Plant Cell Physiol. 19:481–489.Google Scholar
  50. Earley, F. G. P., and Bloxham, D. P., 1978, 3-Azidodibenzofuran, a photoactivated inhibitor for reduced nicotinamide-adenine dinucleotide-ubiquinone reductase, Biochem. Soc. Trans. Sci. 6:1305–1307.Google Scholar
  51. Eker, A. P. M., 1978, Some properties of a DNA photoreactivating enzyme from Streptomyces griseus, ICN-UCLA Symp. Mol. Cell. Biol. 9(DNA Repair Mech.):129–132.Google Scholar
  52. Erlanger, B. F., 1976, Photoregulation of biologically active macromolecules, Annu. Rev. Biochem. 45:267–283.CrossRefGoogle Scholar
  53. Fischer, K. H., and Latzko, E., 1979, Chloroplast ribulose-5-phosphate kinase: Lightmediated activation, and detection of both soluble and membrane-associated activity, Biochem. Biophys. Res. Commun. 89:300–306.CrossRefGoogle Scholar
  54. Fraikin, G. Y., and Rubin, L. B., 1979, Some physiological effects of near-ultraviolet light on microorganisms, Photochem. Photobiol. 29:185–187.CrossRefGoogle Scholar
  55. Frank, R. N., and Buzney, S. M., 1975, Mechanism and specificity of rhodopsin phosphorylation, Biochemistry 14:5110–5117.CrossRefGoogle Scholar
  56. Frank, R. N., and Buzney, S. M., 1977, Rhodopsin phosphorylation and retinal outer segment cyclic nucleotide Phosphodiesterase: Lack of a causal relationship, Exp. Eye Res. 25:495–504.CrossRefGoogle Scholar
  57. Freeman, R. G., 1975, Data on the action spectrum for ultraviolet carcinogenesis, J. Natl. Cancer Inst. 55:1119–1121.Google Scholar
  58. Galston, A. W., 1974, Plant photobiology in the last half century, Plant Physiol. 54:427–436.CrossRefGoogle Scholar
  59. Giffhorn, F., and Gottschalk, G., 1975, Effect of growth conditions on the activation and inactivation of citrate lyase of Rhodopseudomonas gelatinosa, J. Bacteriol. 124:1046–1051.Google Scholar
  60. Girotti, A. W., 1976, Bilirubin-sensitized photoinactivation of enzymes in the isolated membrane of the human erythrocyte, Photochem. Photobiol. 24:525–532.CrossRefGoogle Scholar
  61. Gogotov, I. N., 1978, Relationships in hydrogen metabolism between hydrogenase and nitrogenase in phototrophic bacteria, Biochimie 60:267–275.CrossRefGoogle Scholar
  62. Gordon, W. R., and Koukkari, W. L., 1978, Circadian rhythmicity in the activities of Phenylalanine ammonia-lyase from Lemna perpusilla and Spirodela polyrhiza, Plant Physiol. 62:612–615.CrossRefGoogle Scholar
  63. Gorrell, T. E., and Uffen, R. L., 1978, Light-dependent and light-independent production of hydrogen gas by photosynthesizing Rhodospirillum rubrum mutant C, Photochem. Photobiol. 27:351–358.CrossRefGoogle Scholar
  64. Gressel, J., 1978, Annual European Symposium on Photomorphogenesis, Photochem. Photobiol. 27:109–258.Google Scholar
  65. Harm, H., 1976, Repair of UV-irradiated biological systems: Photoreactivation, in: Photochemistry and Photobiology of Nucleic Acids (S. Y. Wang, ed.), Vol. 2, Biology, pp. 219–263, Academic Press, New York.Google Scholar
  66. Harm, W., 1979, Analysis of photoenzymatic repair of UV lesions in DNA by single light flashes. XII. Evidence for enhanced photolysis of enzyme-substrate complexes by a 2-photon reaction, Mutat. Res. 60:121–133.Google Scholar
  67. Harm, H., and Rupert, C. S., 1976, Analysis of photoenzymatic repair of UV lesions in DNA by single light flashes. XI. Light-induced activation of the yeast photoreactivating enzyme, Mutat. Res. 34:75–92.Google Scholar
  68. Hatch, M. D., 1978, Regulation of enzymes in C4 photosynthesis, Curr. Top. Cell. Regul. 14:1–27.Google Scholar
  69. Haun, M., Durán, N., and Cilento, G., 1978, Energy transfer from enzymically generated triplet carbonyl compounds to the fluorescent state of flavins, Biochem. Biophys. Res. Commun. 81:779–784.CrossRefGoogle Scholar
  70. Heldt, H. W., Chon, C. J., and Lorimer, G. H., 1978, Phosphate requirement for the light activation of ribulose-l,5-biphosphate carboxylase in intact spinach chloroplasts, FEBS Lett. 92:234–240.CrossRefGoogle Scholar
  71. Helene, C., and Charlier, M., 1977, Photosensitized splitting of pyrimidine dimers by indole derivatives and by tryptophan-containing Oligopeptides and proteins, Photochem. Photobiol. 25:429–434.CrossRefGoogle Scholar
  72. Hubbell, W. L., and Bownds, M. D., 1979, Visual transduction in vertebrate photoreceptors, Annu. Rev. Neurosci. 2:17–34.CrossRefGoogle Scholar
  73. Hug, D. H., 1978, The activation of enzymes with light, Photochem. Photobiol. Rev. 3:1–33.CrossRefGoogle Scholar
  74. Hug, D. H., Hunter, J. K., and O’Donnell, P. S., 1977, Photoactivation of urocanase in Pseudomonas putida. Temperature-compensated in vitro model of an hour-glass timer, Biochemistry 16:3995–3999.CrossRefGoogle Scholar
  75. Hug, D. H., O’Donnell, P. S., and Hunter, J. K., 1978, Photoactivation of urocanase in Pseudomonas putida. Role of sulfite in enzyme modification, J. Biol. Chem. 253:7622–7629.Google Scholar
  76. Illnerova, H., and Vanecek, J., 1979, Response of rat pineal serotonin N-acetyltransferase to one min light pulse at different night times, Brain Res. 167:431–434.CrossRefGoogle Scholar
  77. Iuvone, P. M., and Neff, N. H., 1979, Retinal tyrosine hydroxylase: stimulation in vivo by light and in vitro by cAMP-dependent protein phosphorylation conditions, Catecholamines: Basic Clin. Front., Proc. 4th Int. Catecholamine Symp. 1978 1:121–123.Google Scholar
  78. Iuvone, P. M., Galli, C. L., Garrison-Gund, C. K., and Neff, N. H., 1978a, Light stimulates tyrosine hydroxylase activity and dopamine synthesis in retinal amacrine neurons, Science 202:901–902.CrossRefGoogle Scholar
  79. Iuvone, P. M., Galli, C. L., and Neff, N. H., 1978b, Retinal tyrosine hydroxylase: Comparison of short-term and long-term stimulation by light, Mol. Pharmacol. 14: 1212–1219.Google Scholar
  80. Iwatsuki, N., Joe, C. O., and Werbin, H., 1980, Evidence that deoxyribonucleic acid photolyase from baker’s yeast is a flavoprotein, Biochemistry 19:1172–1176.CrossRefGoogle Scholar
  81. Jablonski, P. P., and Anderson, J. W., 1978, Light-dependent reduction of oxidized glutathione by ruptured chloroplasts, Plant Physiol. 61:222–225.CrossRefGoogle Scholar
  82. Jacquot, J.-P., Vidal, J., and Gadal, P., 1976, Identification of a protein factor involved in dithiothreitol activation of NADP malate dehydrogenase from French bean leaves, FEBS Lett. 71:223–227.CrossRefGoogle Scholar
  83. Jacquot, J.-P., Vidal, J., Gadal, P., and Schürmann, P., 1978, Evidence for the existence of several enzyme-specific thioredoxins in plants, FEBS Lett. 96:243–246.CrossRefGoogle Scholar
  84. Jagger, J., and Stafford, R. S., 1965, Evidence for two mechanisms of photoreactivation in Escherichia coli B, Biophys. J. 5:75–88.CrossRefGoogle Scholar
  85. Jayaram, M., Presti, D., and Delbrück, M., 1979, Light-induced carotene synthesis in Phycomyces, Exp. Mycol. 3:42–52.CrossRefGoogle Scholar
  86. Johnson, C. B., 1976, Rapid activation of phytochrome of nitrate reductase in the cotyledons of Sinapis alba, Planta 128:127–131.CrossRefGoogle Scholar
  87. Jones, R. W., and Sheard, R. W., 1977, Effects of blue and red light on nitrate reductase level in leaves of maize and pea seedlings, Plant Sci. Lett. 8:305–311.CrossRefGoogle Scholar
  88. Jose, A. M., 1977, Phytochrome modulation of ATPase activity in a membrane fraction from Phaseolus, Planta 137:203–206.CrossRefGoogle Scholar
  89. Jose, A. M., and Schäfer, E., 1979, Red/far-red modulation in vitro of enzyme activity in a membrane fraction from Phaseolus aureus, Planta 146:75–81.CrossRefGoogle Scholar
  90. Kagawa, T., and Hatch, M. D., 1977, Regulation of C4 photosynthesis: Characterization of a protein factor mediating the activation and inactivation of NADP-malate dehydrogenase, Arch. Biochem. Biophys. 184:290–297.CrossRefGoogle Scholar
  91. Karube, I., Nakamoto, Y., Namba, K., and Suzuki, S., 1976, Photocontrol of ureasecollagen membrane activity, Biochim. Biophys. Acta 429:975–981.Google Scholar
  92. Karube, I., Ishimori, Y., and Suzuki, S., 1977, Photocontrolled binding of cytochrome c to immobilized spiropyran, J. Solid-Phase Biochem. 2:9–17.CrossRefGoogle Scholar
  93. Karube, I., Ishimori, Y., Suzuki, S., and Sato, I., 1978, Photocontrol of affinity chromatography: Purification of asparaginase by photosensitive AHA-gel, Biotechnol. Bioeng. 20:1775–1783.CrossRefGoogle Scholar
  94. Karube, L, Suzuki, S., Nakamoto, Y., and Nishida, M., 1979, Photocontrol of trypsin inhibition, J. Mol. Catal. 6:51–56.CrossRefGoogle Scholar
  95. Kasturi, R., 1979, Influence of light, phytohormones and acetylcholine on the de novo synthesis of acetylcholinesterase in roots of Pisum sativum, Indian J. Biochem. Biophys. 16:14–17.Google Scholar
  96. Kaufman, H., Vratsanos, S. M., and Erlanger, B. F., 1968, Photoregulation of an enzymic process by means of a light-sensitive ligand, Science 162:1487–1488.CrossRefGoogle Scholar
  97. Keilin, D., and Hartree, E. F., 1955, Cyanide compounds of ferroperoxidase and myoglobin and their reversible photodissociation, Biochem. J. 61:153–171.Google Scholar
  98. Kelly, B. C., Jouanneau, Y., and Vignais, P. M., 1979, Nitrogenase activity in Rhodopseudomonas sulfidophila, Arch. Microbiol. 122:145–152.CrossRefGoogle Scholar
  99. Kelly, G. J., Zimmermann, G., and Latzko, E., 1976, Light induced activation of fructose-1,6-bisphosphatase in isolated intact chloroplasts, Biochem. Biophys. Res. Commun. 70:193–199.CrossRefGoogle Scholar
  100. Kendrick, R. E., and Smith, H., 1976, in: Chemistry and Biochemistry of Plant Pigments, 2nd ed. (T. W. Goodwin, ed.), Vol.2, pp. 334–364, Academic Press, London.Google Scholar
  101. Kendrick, R. E., and Spruit, C. J. P., 1977, Phototransformations of phytochrome, Photochem. Photobiol. 26:201–214.CrossRefGoogle Scholar
  102. Keul, V., Kaeppeli, F., Ghosh, C., Krebs, T., Robinson, J. A., and Rétey, J., 1979, Identification of the prosthetic group of urocanase, J. Biol. Chem. 254:843–851.Google Scholar
  103. Kilbride, P., and Ebrey, T. G., 1979, Light-initiated changes of cyclic guanosine monophos-phate levels in the frog retina measured with quick-freezing techniques, J. Gen. Physiol. 74:415–426.CrossRefGoogle Scholar
  104. Klein, D. C., and Weiler, J. L., 1970, Indole metabolism in the pineal gland. A circadian rhythm in N-acetyltransferase, Science 169:1093–1095.CrossRefGoogle Scholar
  105. Klein, R. M., 1978, Plants and near-ultraviolet radiation, Bot. Rev. 44:1–127.CrossRefGoogle Scholar
  106. Klemm, E., and Ninnemann, H., 1979, Nitrate reductase — A key enzyme in blue lightpromoted conidiation and absorbance change of Neurospora, Photochem. Photobiol. 29:629–632.CrossRefGoogle Scholar
  107. Kuan, K. N., Lee, Y. Y., and Melius, P., 1979a, An improved method of light-induced pigmentation, Biochem. J. 177:981–983.Google Scholar
  108. Kuan, K. N., Lee, Y. Y., Tebbetts, L., and Melius, P., 1979b, Light-induced enzyme system leading to pigmentation, Biotechnol. Bioeng. 21:443–459.CrossRefGoogle Scholar
  109. Kühn, H., and Bader, S., 1976, The rate of rhodopsin phosphorylation in isolated retinas of frog and cattle, Biochim. Biophys. Acta 428:13–18.CrossRefGoogle Scholar
  110. Kühn, H., McDowell, J. H., Leser, K.-H., and Bader, S., 1977, Phosphorylation of rhodopsin as a possible mechanism of adaptation, Biophys. Struct. Mech. 3:175–180.CrossRefGoogle Scholar
  111. Lamb, C. J., 1977, Phenylalanine ammonia-lyase and cinnamic acid 4-hydroxylase: Characterization of the concomitant changes in enzyme activities in illuminated potato tuber disks, Planta 135:169–175.CrossRefGoogle Scholar
  112. Lamb, C. J., and Merritt, T. K., 1979, Density labeling studies of the photocontrol of l-phenylalanine ammonia-lyase in disks of potato (Solanum tuberosum) tuber parenchyme, Biochim. Biophys. Acta 588:1–11.CrossRefGoogle Scholar
  113. Lemaitre, B., Toubas, P. L., Guillot, M., Dreux, C., and Relier, J. P., 1977, Changes of serum gonadotropin concentrations in premature babies submitted to phototherapy, Biol. Neonate 32:113–118.CrossRefGoogle Scholar
  114. Lichtenthaler, H. K., 1975, Control of light-induced carotenoid synthesis in Raphanus seedlings by phytochrome, Physiol. Plant. 34:357–358.CrossRefGoogle Scholar
  115. Liebman, P. A., and Pugh, E. N., Jr., 1979, The control of Phosphodiesterase in rod disk membranes: Kinetics, possible mechanism and significance for vision, Vision Res. 19:375–380.CrossRefGoogle Scholar
  116. Lorimer, G. H., Badger, M. R., and Andrews, T. J., 1976, The activation of ribulose-1,5-bisphosphate carboxylase by carbon dioxide and magnesium ions. Equilibria, kinetics, a suggested mechanism, and physiological implications, Biochemistry 15:529–536.CrossRefGoogle Scholar
  117. Macchia, V., Mandato, E., Nistico, G., and Rotiroti, D., 1977, Effects of light and darkness on adenylate cyclase system of chick optic lobes, Bull. Mol. biol. Med. 2:99–104.Google Scholar
  118. Madden, J. J., Denson, J., and Werbin, H., 1976, Purification from baker’s yeast of an activator of DNA photolyase, Biochim. Biophys. Acta 454:222–229.Google Scholar
  119. Marcus, A., 1960, Photocontrol of formation of red kidney bean leaf triphosphopyridine nucleotide linked triosephosphate dehydrogenase, Plant Physiol. 35:126–128.CrossRefGoogle Scholar
  120. Marmé, D., 1977, Phytochrome: Membranes as possible sites of primary action, Annu. Rev. Plant Physiol. 28:173–198.CrossRefGoogle Scholar
  121. Martinek, K., and Berezin, I. V., 1979, Artificial light-sensitive enzymatic systems as chemical amplifiers of weak light signals, Photochem. Photobiol. 29:637–649.CrossRefGoogle Scholar
  122. Martinek, K., Varfolomeyev, S. D., and Berezin, I. V., 1971, Interaction of α-chymotrypsin with N-cinnamoylimidazole. Substrate sensitive to light, Eur. J. Biochem. 19:242–249.CrossRefGoogle Scholar
  123. McDowell, J. H., and Kühn, H., 1977, Light-induced phosphorylation of rhodopsin in cattle photoreceptor membranes: Substrate activation and inactivation, Biochemistry 16:4054–4060.CrossRefGoogle Scholar
  124. McKinney, D. W., Buchanan, B. B., and Wolosiuk, R. A., 1978, Activation of chloroplast ATPase by reduced thioredoxin, Phytochemistry 17:794–795.CrossRefGoogle Scholar
  125. Meyer, J., Kelley, B. C., Vignais, P. M., 1978, Effect of light on nitrogenase function and synthesis in Rhodopseudomonas capsulata, J. Bacteriol. 136:201–208.Google Scholar
  126. Miller, J. A., and Paulsen, R., 1975, Phosphorylation and dephosphorylation of frog outer segment membranes as part of the visual process, J. Biol. Chem. 250:4427–4432.Google Scholar
  127. Miller, J. A., Brodie, A. E., and Bownds, M. D., 1975, Light-activated rhodopsin phosphorylation may control light sensitivity in isolated rod outer segments, FEBS Lett. 59:20–23.CrossRefGoogle Scholar
  128. Miller, J. A., Paulsen, R., and Bownds, M. D., 1977, Control of light-activated phosphorylation in frog photoreceptor membranes, Biochemistry 16:2633–2639.CrossRefGoogle Scholar
  129. Miller, W. H., and Nicol, G. D., 1979, Evidence that cyclic GMP regulates membrane potential in rod photoreceptors, Nature (London) 280:64–66.CrossRefGoogle Scholar
  130. Miller, W. H., Gorman, R. E., and Bitensky, M. W., 1971, Cyclic adenosine monophosphate: Function in photoreceptors, Science 174:295–297.CrossRefGoogle Scholar
  131. Mills, J. D., and Hind, G., 1979, Light-induced Mg2+ ATPase activity of coupling factor in intact chloroplasts, Biochim. Biophys. Acta 547:455–462.CrossRefGoogle Scholar
  132. Mohr, H., 1977, Phytochrome and chloroplast development, Endeavor 1:107–114.CrossRefGoogle Scholar
  133. Mohr, H., Drumm, H., Schmidt, R., and Steinitz, B., 1979, The effect of light pretreatments on phytochrome-mediated induction of anthocyanin and of Phenylalanine ammonia-lyase, Planta 146:369–376.CrossRefGoogle Scholar
  134. Montiagnoli, G., 1977, Biological effects of light on proteins: Enzyme activity modulation, Photochem. Photobiol. 26:679–683.CrossRefGoogle Scholar
  135. Montagnoli, G., Monti, S., Nannicini, L., and Felicioli, R., 1976, Azoaldolase photosensitivity, Photochem. Photobiol. 23:29–32.CrossRefGoogle Scholar
  136. Montagnoli, G., Balestreri, E., Nannicini, L., Bellucci, A., and Bracaloni, M., 1978a, pH controlled diazo coupling of aldolase, Int. J. Peptide Protein Res. 11:28–36.CrossRefGoogle Scholar
  137. Montagnoli, G., Monti, S., Nannicini, L., Giovannitti, M. P., and Ristori, M. G., 1978b, Photomodulation of azoaldolase activity, Photochem. Photobiol. 27:43–49.CrossRefGoogle Scholar
  138. Moss, S. H., and Smith, K. C., 1980, Cerenkov ultraviolet radiation (187Cs γ-rays) and direct excitation (137Cs γ-rays and 50 kVp X-rays) produced photoreactivable damage in Escherichia coli, Abstr. Am. Soc. Photobiol. 8:68.Google Scholar
  139. Murphy, M. M., and Gordon, M. P., 1971, Light-mediated regulation of TMV-RNA photoreactivation, Photochem. Photobiol. 13:45–55.CrossRefGoogle Scholar
  140. Nakamoto, Y., Karube, I., Terawaki, S., and Suzuki, S., 1976, Photocontrol of lactate dehydrogenase-spiropyran collagen membrane, J. Solid-Phase Biochem. 1:143–149.Google Scholar
  141. Nakamoto, Y., Nishida, M., Karube, I., and Suzuki, S., 1977, Photocontrol of immobilized trypsin activity, Biotechnol. Bioeng. 19:1115–1123.CrossRefGoogle Scholar
  142. Namba, K., and Suzuki, S., 1975, Photo-control of enzyme activity with a photochromic spiropyran compound; modification of a-amylase with spiropyran compound, Chem. Lett. 1975:947–950.CrossRefGoogle Scholar
  143. Nelson, N., 1976, Structure and function of chloroplast ATPase, Biochim. Biophys. Acta 456:314–338.Google Scholar
  144. Nikandrov, V. V., Brin, G. P., and Krasnovskii, A. A., 1978, Light-induced activation of NADH and NADPH, Biochemistry (Engl. Transi. Biokhimiya) 43(4, Pt. l):507–515.Google Scholar
  145. Nishizawa, A. N., Wolosiuk, R. A., and Buchanan, B. B., 1979, Chloroplast Phenylalanine ammonia-lyase from spinach leaves. Evidence for light-mediated regulation via the ferredoxin/thioredoxin system, Planta 145:7–12.CrossRefGoogle Scholar
  146. Nisticò, G., De Sarro, A., Pata, P., Richetti, A., Rotiroti, D., and Di Giorgio, R. M., 1979a, Light-evoked changes in chick optic lobe adenylate-cyclase, Res. Commun. Chem. Pathol. Pharmacol. 24:13–25.Google Scholar
  147. Nisticò, G., Ientile, R., Rotiroti, D., and Di Giorgio, R. M., 1979b, Light-evoked changes in chick optic lobe GABA system, Res. Commun. Chem. Pathol. Pharmacol. 24:447–456.Google Scholar
  148. O’Brien, T. G., 1976, The induction of Ornithine decarboxylase as an early, possibly obligatory, event in mouse skin carcinogenesis, Cancer Res. 36:2644–2653.Google Scholar
  149. O’Brien, T. G., Simsiman, R. C., and Boutwell, R. K., 1975, Induction of the polyaminebiosynthetic enzymes in mouse epidermis and their specificity for tumor promotion, Cancer Res. 35:2426–2433.Google Scholar
  150. Oliveira, O. M. M. F., Haun, M., Durán, N., O’Brien, P. J., O’Brien, C. R., Bechara, E. J. H., and Cilento, G., 1978, Enzyme-generated electronically excited carbonyl compounds, J. Biol. Chem. 253:4707–4712.Google Scholar
  151. Orzalesi, M., Natoli, G., Panero, A., and Ciocca, M., 1976, Plasma hepatic enzymes in jaundiced newborn infants treated with phototherapy, Birth Defects, Orig. Artic. Ser. 12(2):93–99.Google Scholar
  152. Osman, M., and Valadon, L. R. G., 1977, Effect of light quality on the photoinduction of carotenoid synthesis in Verticillium agaricinum, Microbios 18:229–234.Google Scholar
  153. Parrish, J. A., 1979, Photomedicine, Abstr. Am. Soc. Photobiol. 1979:75.Google Scholar
  154. Pearson, H. W., Howsley, R., Kjeldsen, C. K., and Walsby, A. E., 1979, Aerobic nitrogenase activity associated with a non-heterocystous filamentous cyanobacterium, FEMS Microbiol. Lett. 5:163–167.CrossRefGoogle Scholar
  155. Pober, J. S., and Bitensky, M. W., 1979, Light-regulated enzymes of vertebrate retinal rods, Adv. Cyclic Nucleotide Res. 11:265–300.Google Scholar
  156. Polans, A. S., Hermolin, J., Bownds, M. D., 1979, Light-induced dephosphorylation of two proteins in frog rod outer segments. Influence of cyclic nucleotides, J. Gen. Physiol. 74:595–613.CrossRefGoogle Scholar
  157. Pratt, L. H., 1978, Molecular properties of phytochrome, Photochem. Photobiol. 27:81–105.CrossRefGoogle Scholar
  158. Pratt, L. H., 1979, Phytochrome: Function and properties, Photochem. Photobiol. Rev. 4:59–124.CrossRefGoogle Scholar
  159. Presti, D., Hsu, W.-J., and Delbrück, M., 1977, Phototropism in Phycomyces mutants lacking β-carotene, Photochem. Photobiol. 26:403–405.CrossRefGoogle Scholar
  160. Pupillo, P., and Giuliani Piccari, G., 1975, The reversible depolymerization of spinach chloroplast glyceraldehyde-phosphate dehydrogenase, Eur. J. Biochem. 51:475–482.CrossRefGoogle Scholar
  161. Purec, L., and Krasna, A. I., 1967, The activation of the hydrogenase of Proteus vulgaris by visible light, Proc. Natl. Acad. Sci. U.S.A. 57:1416–1421.CrossRefGoogle Scholar
  162. Quail, P. H., 1977, Phytochrome action, Bot. Monogr. (Oxford) 14:365–388, 442-483.Google Scholar
  163. Ramírez, R., and Vicente, C., 1979, Photocontrol of nitrite reductase in cotyledons of Citrullus vulgaris, Phyton (Buenos Aires) 37:25–28.Google Scholar
  164. Rau, W., and Schrott, E. F., 1979, Light-mediated biosynthesis in plants, Photochem. Photobiol. 30:755–765.CrossRefGoogle Scholar
  165. Reiter, R. J., 1977, The Pineal, Vol. 2, Eden Press, St. Albans, Vt.Google Scholar
  166. Riebman, J. B., and Binkley, S., 1979, Regulation of pineal glands of chickens: Organ culture, Comp. Biochem. Physiol. 63C:93–98.Google Scholar
  167. Robinson, S. P., McNeil, P. H., and Walker, D. A., 1979, Ribulose bisphosphate carboxyiase — Lack of dark inactivation of the enzyme in experiments with protoplasts, FEBS Lett. 97:296–300.CrossRefGoogle Scholar
  168. Robinson, W. E., and Hagins, W. A., 1977, A light-activated GTPase in retinal rod outer segments, Biophys. J. 17:196a.CrossRefGoogle Scholar
  169. Robinson, W. E., and Hagins, W. A., 1979a, A light-activated GTPase in retinal rod outer segments, Photochem. Photobiol. 29:693.CrossRefGoogle Scholar
  170. Robinson, W. E., and Hagins, W. A., 1979b, GTP hydrolysis in intact rod outer segments and the transmitter cycle in visual excitation, Nature (Lond.) 280:398–400.CrossRefGoogle Scholar
  171. Robinson, W. E., Yoshikami, S., and Hagins, W. A., 1975, ATP in retinal rods, Biophys. J. 15:168a.Google Scholar
  172. Roldán, J. M., Calero, F., and Aparicio, P. J., 1978, Photoactivation of spinach nitrate reductase: Role of flavins, Z. Pflanzenphysiol. 90:467–474.Google Scholar
  173. Rose, S. P. R., 1978, Macromolecular mechanisms and long-term changes in behavior, Biochem. Soc. Trans. 6:844–848.Google Scholar
  174. Rose, S. P. R., and Stewart, M. G., 1978, Transient increase in muscarinic acetylcholine receptor and acetylcholinesterase in visual cortex on first exposure of dark-reared rats to light, Nature (London) 271:169–170.CrossRefGoogle Scholar
  175. Roth, D., and Hug, D. H., 1972, Photoactivation of urocanase in Pseudomonas putida: Action spectrum, Radiat. Res. 50:94–104.CrossRefGoogle Scholar
  176. Rowell, P., Sampaio, M. J. A. M., Ladha, J. K., and Stewart, W. D. P., 1979, Alteration of cyanobacterial glutamine synthetase activity in vivo in response to light and NH+4, Arch. Microbiol. 120:195–200.CrossRefGoogle Scholar
  177. Rupert, C. S., 1960, Photoreactivation of transforming DNA by an enzyme from bakers’ yeast, J. Gen. Physiol. 43:573–595.CrossRefGoogle Scholar
  178. Sandmann, G., and Hilgenberg, W., 1978, The light-dependent intermediary metabolism of Phycomyces blakesleeanus Bgff. I. The CO2 fixation reaction, Biochem. Physiol. Pflanz. 173:390–395.Google Scholar
  179. Sasakawa, H., and Yamamoto, Y., 1979, Effects of red, far red, and blue light on enhancement of nitrate reductase activity and on nitrate uptake in etiolated rice seedlings, Plant Physiol. 63:1098–1101.CrossRefGoogle Scholar
  180. Satter, R. L., and Galston, A. W., 1976, in: Chemistry and Biochemistry of Plant Pigments, 2nd ed. (T. W. Goodwin, ed.), Vol. 1, pp. 680–735, Academic Press, London.Google Scholar
  181. Schopfer, P., 1977, Phytochrome control of enzymes, Annu. Rev. Plant Physiol. 28:223–252.CrossRefGoogle Scholar
  182. Schroeder, J., Kreuzaler, F., Schaefer, E., and Hahlbrock, K., 1979, Concomitant induetion of Phenylalanine ammonia-lyase and flavanone synthase mRNAase in irradiated plant cells, J. Biol. Chem. 254:57–65.Google Scholar
  183. Schürmann, P., and Wolosiuk, R. A., 1978, Studies on the regulatory properties of chloroplast fructose-1,6-bisphosphatase, Biochim. Biophys. Acta 522:130–138.Google Scholar
  184. Schwarz, Z., Maretzki, D., and Schönherr, J., 1976, Dissociated and associated forms of NAD(P)-dependent glyceraldehyde 3-phosphate dehydrogenase after dark-light transitions in bean leaves, Biochem. Physiol. Pflanz. 170:37–50.Google Scholar
  185. Shichi, H., and Somers, R. L., 1978, Light-dependent phosphorylation of rhodopsin. Purification and properties of rhodopsin kinase, J. Biol. Chem. 253:7040–7046.Google Scholar
  186. Shinozawa, T., Sen, I., Wheeler, G., and Bitensky, M., 1979, Predictive value of the analogy between hormone-sensitive adenylate cyclase and light-sensitive photoreceptor cyclic GMP Phosphodiesterase: A specific role for a light-sensitive GTPase as a component in the activation sequence, J. Supramol. Struct. 10:185–190.CrossRefGoogle Scholar
  187. Shoshan, V., and Selman, B. R., 1979, The relationship between light-induced adenine nucleotide exchange and ATPase activity in chloroplast thylakoid membranes, J. Biol. Chem. 254:8801–8807.Google Scholar
  188. Shropshire, W., Jr., 1977, Photomorphogenesis, in: The Science of Photobiology (K. C. Smith, ed.), pp. 281–312, Plenum Press, New York.CrossRefGoogle Scholar
  189. Sisson, T. R. C., Granati, B., Sonawane, R., and Fiorentino, T., 1978, Effect of light on enzyme activity in the perfused Gunn rat liver, Abstr. Am. Soc. Photobiol. 1978:98.Google Scholar
  190. Sitaramayya, A., Virmaux, N., and Mandel, P., 1977, On a soluble system for studying light activation of rod outer segment cyclic GMP Phosphodiesterase, Neurochem. Res. 2:1–10.CrossRefGoogle Scholar
  191. Smith, H. (ed.), 1976, Light and Plant Development, Butterworth, London.Google Scholar
  192. Smith, H., and Kendrick, R. E., 1976, in: Chemistry and Biochemistry of Plant Pigments, 2nd ed. (T. W. Goodwin, ed.), Vol. 1, pp. 377–424, Academic Press, London.Google Scholar
  193. Smith, H., Attridge, T. H., and Johnson, C. B., 1976, Photocontrol of enzyme activity, in: Perspectives in Experimental Biology (N. Sunderland, ed.), Vol. 2, pp. 325–336, Pergamon Press, New York.Google Scholar
  194. Smith, H., Billett, E. E., and Giles, A. B., 1977, The photocontrol of gene expression in higher plants, in: Regulation of Enzyme Synthesis and Activity in Higher Plants (H. Smith, ed.), pp. 93–127, Academic Press, New York.Google Scholar
  195. Smith, K. C., 1977, New topics in photobiology, in: The Science of Photobiology (K. C. Smith, ed.), pp. 397–417, Plenum Press, New York.CrossRefGoogle Scholar
  196. Snapka, R. M., and Fuselier, C. O., 1977, Photoreactivating enzyme from Escherichia coli, Photochem. Photobiol. 25:415–420.CrossRefGoogle Scholar
  197. Song, P.-S., Chae, Q., and Gardner, J. D., 1979, Spectroscopic properties and chromophore conformations of the photomorphogenic receptor: Phytochrome, Biochim. Biophys. Acta 576:479–495.Google Scholar
  198. Steup, M., 1977, Blue light-dependent regulation of cytoplasmic ribosomal RNA synthesis of Chlorella, Arch. Microbiol. 112:277–282.CrossRefGoogle Scholar
  199. Stewart, G. R., and Rhodes, D., 1977, Control of enzyme levels in the regulation of nitrogen assimilation, in: Regulation of Enzyme Synthesis and Activity in Higher Plants (H. Smith, ed.), pp. 1–22, Academic Press, London.Google Scholar
  200. Sutherland, B. M., 1977, Introduction. Fundamentals of photoreactivation, Photochem. Photobiol. 25:413–414.CrossRefGoogle Scholar
  201. Sutherland, B. M., 1978, Photoreactivation in mammalian cells, Int. Rev. Cytol., Suppl., 8:301–334.CrossRefGoogle Scholar
  202. Sutherland, B. M., and Hausrath, S. G., 1979, Multiple loci affecting photoreactivation in Escherichia coli, J. Bacteriol. 138:333–338.Google Scholar
  203. Sutherland, B. M., Oliver, R., Fuselier, C. O., and Sutherland, J. C., 1976, Photoreactivation of pyrimidine dimers in the DNA of normal and Xeroderma pigmentosum cells, Biochemistry 15:402–406.CrossRefGoogle Scholar
  204. Sutherland, J. C., 1977, Photophysics and photochemistry of photoreactivation, Photochem. Photobiol. 25:435–440.CrossRefGoogle Scholar
  205. Sutherland, J. C., 1978, Mechanism of action of the photoreactivating enzyme from E. coli: Recent results, ICN-UCLA Symp, Mol. Cell Biol. 9(DNA Repair Mech.): 137–140.Google Scholar
  206. Suzuki, S., Karube, I., and Namba, K., 1976, Enzyme-collagen membranes, in: Analysis and Control of Immobilized Enzyme Systems (D. Thomas and J.-P. Kernevez, eds.), pp. 151–163, Elsevier/North-Holland, Amsterdam.Google Scholar
  207. Takahashi, J. S., and Menaker, M., 1979, Physiology of avian circadian pacemakers, Fed. Proc. 38:2583–2588.Google Scholar
  208. Thacher, S. M., 1978, Light-stimulated, magnesium-dependent ATPase in toad retinal rod outer segments, Biochemistry 17:3005–3011.CrossRefGoogle Scholar
  209. Thomas, G., 1977, Effects of near ultraviolet light on microorganisms, Photochem. Photobiol. 26:669–673.CrossRefGoogle Scholar
  210. Tischner, R., and Hiittermann, A., 1978, Light-mediated activation of nitrate reductase in Chlorella, Plant Physiol. 62:284–286.CrossRefGoogle Scholar
  211. Towill, L., Huang, C. W., and Gordon, M. P., 1977, Photoreactivation of DNA-containing cauliflower mosaic virus and tobacco mosaic virus RNA on Datura, Photochem. Photobiol. 25:249–257.CrossRefGoogle Scholar
  212. Valadon, L. R. G., Osman, M., and Mummery, R. S., 1979, Phytochrome mediated carotenoid synthesis in the fungus Verticillium agaricinum, Photochem. Photobiol. 29:605–607.CrossRefGoogle Scholar
  213. Venkataramana, S., and Das, V. S. R., 1979, Photoactive ATP dependent ghutamine synthetase from chloroplasts of Setaria italica Beauv., Z. Naturforsch., Sect. C Biosci. 34C:210–213.Google Scholar
  214. Verma, A. K., Lowe, N. J., and Boutwell, R. K., 1979, Induction of mouse epidermal Ornithine decarboxylase activity and DNA synthesis by ultraviolet light, Cancer Res. 39:1035–1040.Google Scholar
  215. Vidal, J., Rio, M. C., and Gadal, P., 1977, Étude de l’évolution de la malate déshydrogénase à NADP durant le verdissement des feuilles de Phaseolus vulgaris L., Plant Sci. Lett. 8:243–249.CrossRefGoogle Scholar
  216. Vince-Prue, D., 1976, Phytochrome and photoperiodism, Proc. Easter Sch. Agric. Sci., Univ. Nottingham 1975 22(Light Plant Dev.):347–369.Google Scholar
  217. Wainwright, S. D., 1975, Effects of changes in environmental lighting upon levels of hydroxyindole-O-methyltransferase activity in the developing-chick pineal gland, Can. J. Biochem. 53:438–443.CrossRefGoogle Scholar
  218. Wainwright, S. D., and Wainwright, L. K., 1979, Chick pineal serotonin acetyltransferase: A diurnal cycle maintained in vitro and its regulation by light, Can. J. Biochem. 57:700–709.CrossRefGoogle Scholar
  219. Wang, T.-C. V., and Smith, K. C., 1978, Photoreactivation of Escherichia coli irradiated with ionizing radiation, ICN-UCLA Symp. Mol. Cell. Biol. 9(DNA Repair Mech.):151–154.Google Scholar
  220. Weiler, M., Virmaux, N., and Mandel, P., 1975, Light-stimulated phosphorylation of rhodopsin in the retina: The presence of a protein kinase that is specific for photobleached rhodopsin, Proc. Natl. Acad. Sci. U.S.A. 72:381–385.CrossRefGoogle Scholar
  221. Wellmann, E., 1976, Specific ultraviolet effects in plant morphogenesis, Photochem. Photobiol. 24:659–660.CrossRefGoogle Scholar
  222. Werbin, H., 1977, DNA photolyase, Photochem. Photobiol. 26:675–678.CrossRefGoogle Scholar
  223. Werbin, H., and Madden, J. J., 1977, The subunit structure of yeast DNA photolyase and the purification of a fluorescent activator of the enzyme, Photochem. Photobiol. 25:421–427.CrossRefGoogle Scholar
  224. Wheeler, G. L., Matuo, Y., and Bitensky, M. W., 1977, Light-activated GTPase in vertebrate photoreceptors, Nature (Lond.) 269:822–824.CrossRefGoogle Scholar
  225. White, E. H., Miano, J. D., Watkins, C. J., and Breaux, E. J., 1974, Chemically produced excited states, Angew. Chem. (Int. Ed. Engl.) 13:229–243.CrossRefGoogle Scholar
  226. Windorfer, A., Jr., Faxelius, G., and Boréus, L. O., 1975, Studies on phototherapy in newborn infants, Acta Paediatr. Scand. 64:293–298.CrossRefGoogle Scholar
  227. Wolken, J. J., 1972, Phycomyces: A model photosensory cell, Int. J. Neurosci. 3:135–146.CrossRefGoogle Scholar
  228. Wolosiuk, R. A., and Buchanan, B. B., 1978, Regulation of chloroplast phosphoribulokinase by the ferredoxin/thioredoxin system, Arch. Biochem. Biophys. 189:97–101.CrossRefGoogle Scholar
  229. Wolosiuk, R. A., Crawford, N. A., Yee, B. C., and Buchanan, B. B., 1979, Isolation of three thioredoxins from spinach leaves, J. Biol. Chem. 254:1627–1632.Google Scholar
  230. Wolosiuk, R. A., Buchanan, B. B., and Crawford, N. A., 1977, Regulation of NADP-malate dehydrogenase by the light-actuated ferredoxin/thioredoxin system of chloroplasts, FEBS Lett. 81:253–258.CrossRefGoogle Scholar
  231. Wood, N., and Rose, S. P. R., 1979, Changes in acetylchlolinesterase with light exposure, time of day, and motor activity in the rat, Behav. Neural Biol. 25:79–89.CrossRefGoogle Scholar
  232. Woodhead, A. D., and Achey, P. M., 1979, Photoreactivating enzyme in the blind cave fish, Anoptichthys jordani, Comp. Biochem. Physiol. 63B:73–76.Google Scholar
  233. Woodruff, M. L., and Bownds, M. D., 1979, Amplitude, kinetics, and reversibility of a light-induced decrease in guanosine 3′5′-cyclic monophosphate in frog photoreceptor membranes, J. Gen. Physiol. 73:629–653.CrossRefGoogle Scholar
  234. Woodruff, M. L., Bownds, D., Green, S. H., Morrisey, J. L., and Shedlovsky, A., 1977, Guanosine 3′,5′-cyclic monophosphate and the in vitro physiology of frog photoreceptor membranes, J. Gen. Physiol. 69:667–679.CrossRefGoogle Scholar
  235. Wun, K. L., Gih, A., and Sutherland, J. C., 1977, Photoreactivating enzyme from Escherichia coli: Appearance of new absorption on binding to ultraviolet irradiated DNA, Biochemistry 16:921–924.CrossRefGoogle Scholar
  236. Yarygin, K. N., Trushina, E. D., and Isachenkov, V. A., 1979, Circadian rhythm of Ornithine decarboxylase activity and its endogenous high-molecular-weight inhibitor in the rat pineal gland, Biochemistry (Engl. Transl. Biokhimiya) 44:1038–1041 (1980).Google Scholar
  237. Yeary, R. A., Wise, K. J., and Davis, D. R., 1975, Activation of hepatic microsomal glucuronyltransferase from Gunn rats by exposure to light, Life Sci. 17:1887–1890.CrossRefGoogle Scholar
  238. Yee, R., and Liebman, P. A., 1978, Light-activated Phosphodiesterase of the rod outer segment. Kinetics and parameters of activation and deactivation, J. Biol. Chem. 253:8902–8909.Google Scholar
  239. Yoshizawa, T., and Tokunaga, F., 1979, Vision, Photochem. Photobiol. 29:197–202.CrossRefGoogle Scholar
  240. Zatz, M., 1979, Photoentrainment, pharmacology, and phase shifts of the circadian rhythm in the rat pineal, Fed. Proc. 38:2596–2601.Google Scholar
  241. Zucker, M., 1972, Light and enzymes, Annu. Rev. Plant Physiol. 23:133–156.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Daniel H. Hug
    • 1
    • 2
  1. 1.Bacteriology Research LaboratoryVeterans Administration Medical CenterIowa CityUSA
  2. 2.Department of Internal MedicineUniversity of IowaIowa CityUSA

Personalised recommendations