Advertisement

The Blue Light Receptor(s): Primary Reactions and Subsequent Metabolic Changes

  • Horst Senger
  • Winslow R. Briggs

Abstract

The growing awareness of blue-light-induced phenomena in plants and microorganisms is reflected in the increased research activity into an ever-increasing variety of blue light effects in biological systems. In the early 1930s the first publications dealing with specific effects of blue light on biological processes in plants were those on phototropism (Galston, 1959). Closely related were other studies on the blue-light-induced photooxidation of indole-3-acetic acid, the plant growth hormone (Galston and Baker, 1959). More than 20 years were to elapse, however, before the discovery that blue light could specifically influence carbon metabolism in higher plants and algae (Hauschild et al., 1962; Kowallik, 1962; Voskresenskaya, 1953); this finding then triggered an avalanche of research into blue light effects on plant metabolism, photomorphogenesis, development, and algal photomovement.

Keywords

Methylene Blue Blue Light Nitrate Reductase Action Spectrum Neurospora Crassa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akoyunoglou, G., Anni, H., and Kaiosakas, K., 1980, The effect of light quality and the mode of illumination on chloroplast development in etiolated bean leaves, in: The Blue Light Syndrome (H. Senger, ed.), pp. 473–484, Springer-Verlag, Berlin/ Heidelberg/New York.CrossRefGoogle Scholar
  2. Andersag, R., and Pirson, A., 1976, Verwertung von Glucose in Chlorella Kulturen bei Bau-und Rotlichtbestrahlung, Biochem. Physiol. Pflanz. 169:71–85.Google Scholar
  3. Aparicio, P. J., Roldan, J. M., and Calero, F., 1976, Blue light photoreactivation of nitrate reductase from green algae and higher plants, Biochem. Biophys. Res. Commun. 70:1071–1077.CrossRefGoogle Scholar
  4. Apel, K., and Klopstech, K., 1978, The plastid membranes of barley. Light-induced appearance of m-RNA coding for the apoprotein of the light-harvesting chlorophyll a/b protein, Eur. J. Biochem. 85:581–588.CrossRefGoogle Scholar
  5. Badour, S. S., Tan, C. K., and Waygood, E. R., 1972, Effect of red and blue light on the metabolism of Chlamydomonas segnis Ettl, J. Phycol. 8(Suppl.):16.Google Scholar
  6. Bassham, J. A., 1973, Control of photosynthetic carbon metabolism, in: Rate Control of Biological Processes (D. D. Davies, ed.), SEB, Vol. 27, pp. 461–483, Cambridge University Press, New York.Google Scholar
  7. Batra, P. P., and Rilling, H. C., 1964, On the mechanism of photoinduced carotenoid synthesis: Aspects of the photoinductive reaction, Arch. Biochem. Biophys. 107:485–492.CrossRefGoogle Scholar
  8. Beale, S. I., 1971, Studies on biosynthesis and metabolism of δ-aminolevulinic acid in Chlorella, Plant Physiol. 48:316–319.CrossRefGoogle Scholar
  9. Bensasson, R. V., 1975, Spectroscopic and biological properties of caretonoids, in: Biophysics of Photoreceptors and Photobehavior of Microorganisms (G. Colombetti, ed.), pp. 146–163, Proceedings of the International School Badia Fiesolana, Lito Felici, Pisa.Google Scholar
  10. Bergmann, K., Burke, P. V., Cerda-Olmedo, E., David, C. N., Delbrück, M., Foster, K. W., Goddell, E. W., Heisenberg, M., Meissner, G., Zalokar, M., Dennison, D. S., and Shropshire, W., 1969, Phycomyces, Bacteriol. Rev. 33:99–157.Google Scholar
  11. Björn, L. O., 1980, Blue light effects on plastid development in higher plants, in: The Blue Light Syndrome (H. Senger, ed.), pp. 455–464, Springer-Verlag, Berlin/ Heidelberg/New York.CrossRefGoogle Scholar
  12. Bogorad, L., 1965, Studies of phycobiliproteins, Rec. Chem. Prog. 26:1–12.Google Scholar
  13. Brain, R. D., and Briggs, W. R., 1977, Light-induced cytochrome reduction in Neurospora crassa membrane fractions, in: Proceedings, 7th International Congress of Photobiology (R. Baker, ed.), pp. 539–544, Plenum Press, London.Google Scholar
  14. Brain, R. D. Freedberg, J. A., Weiss, C. V., and Briggs, W. R., 1977a, Blue light induced absorbance changes in membrane fractions from corn and Neurospora, Plant Physiol. 59:948–952.CrossRefGoogle Scholar
  15. Brain, R. D., Woodward, D. O, and Briggs, W. R., 1977b, Correlative studies of light sensitivity and cytochrome content in Neurospora crassa, Carnegie Inst. Wash. Yearb. 76:295–299.Google Scholar
  16. Briggs, W. R., 1963, The phototropic responses of higher plants, Annu. Rev. Plant Physiol. 14:311–352.CrossRefGoogle Scholar
  17. Briggs, W. R., 1964, Phototropism in higher plants, in: Photophysiology (A. C. Giese, ed.), Vol. 1, pp. 223–271, Academic Press, New York.Google Scholar
  18. Briggs, W. R., 1976, The nature of the blue light photoreceptor in higher plants, in: Light and Plant Development (H. Smith, ed.), pp. 7–18, Butterworth, London.Google Scholar
  19. Briggs, W. R., 1980, A blue light photoreceptor system in higher plants and fungi, in: Photoreceptors and Plant Development (J. A. De Greef, ed.), Antwerp University Press, Antwerp, in press.Google Scholar
  20. Brinkmann, G., 1979, Die funktionelle und molekulareifferenzierung der Thylakoidmembran in Mutanten von Scenedesmus obliquus, Dissertation, University of Marburg.Google Scholar
  21. Brinkmann, G., and Senger, H., 1978a, The development of structure and function in chloroplasts of greening mutants of Scenedesmus IV. Blue light dependent carbohydrate and protein metabolism, Plant Cell Physiol. 19:1427–1437.Google Scholar
  22. Brinkmann, G., and Senger, H., 1978b, Light-dependent formation of thylakoid membranes during the development of the photosynthetic apparatus in pigment mutant C-2A’ of Scenedesmus obliquus, in: Chloroplast Development (G. Akoyunoglou and J. H. Argyrouoi-Akoyunoglou, eds.), pp. 201–206, Elsevier/North Holland, Amsterdam.Google Scholar
  23. Brinkmann, G., and Senger, H., 1980, Blue light regulation of chloroplast development in Scenedesmus, in: The Blue Light Syndrome (H. Senger, ed.), pp. 526–540, Springer-Verlag, Berlin/Heidelberg/New York.CrossRefGoogle Scholar
  24. Britz, S. J., and Briggs, W. R., 1978, News on a blue light-absorbing photoreceptor system, in: Plant Growth and Light Perception (B. I. Deutsch and A. O. Gyldenholm, eds.), University of Aarhus, Denmark, pp. 17–24.Google Scholar
  25. Britz, S. J., Schrott, E., Widell, S., and Briggs, W. R., 1979, Red light-induced reduction of a particle-associated b-type cytochrome from corn in the presence of methylene blue, Photochem. Photobiol. 29:359–365.CrossRefGoogle Scholar
  26. Burchard, R. P., and Hendricks, S. B., 1969, Action spectrum for carotenogenesis in Myxococcus xanthus, J. Bacteriol. 97:1165–1168.Google Scholar
  27. Buschmann, C., Meier, D., Kleudgen, H. K., and Lichtenthaler, H. K., 1978, Regulation of chloroplast development of red and blue light, Photochem. Photobiol. 27:195–198.CrossRefGoogle Scholar
  28. Butler, W. L., 1980, The mediation of redox changes by photoreceptor pigments, paper presented at the International Conference on the Effect of Blue Light in Plants and Microorganisms, Marburg, July 1979.Google Scholar
  29. Calero, F., Ullrich, W. R., and Aparicio, P. J., 1980, Regulation by monochromatic light of nitrate uptake in Chlorella fusca, in: The Blue Light Syndrome (H. Senger, ed.), pp. 411–421, Springer-Verlag, Berlin/Heidelberg/New York.CrossRefGoogle Scholar
  30. Caubergs, R. J., Goldsmith, M. H. M., and Briggs, W. R., 1978, Effect of inhibitors on light-induced absorbance changes in corn membrane fractions, Carnegie Inst. Wash. Yearb. 77:356–357.Google Scholar
  31. Caubergs, R. J., Goldsmith, M. H. M., and Briggs, W. R., 1979, Light-inducible cytochrome reduction in membranes from corn coleoptiles: Fractionation and inhibitor studies, Carnegie Inst. Wash. Yearb. 78:121–125.Google Scholar
  32. Cerda-Olmedo, E., and Torres-Martinez, S., 1979, Genetics and regulation of carotene biosynthesis, Pure Appl. Chem. 51:631–637.CrossRefGoogle Scholar
  33. Chance, B., 1953, The carbon-monoxide compounds of cytochrome oxidases I. Difference spectra, J. Biol. Chem. 202:383–407.Google Scholar
  34. Chollet, R., Anderson, L. L., and Hovsepian, L. C., 1975, The absence of tightly bound copper, iron, and flavin nucleotide in crystalline ribulose 1,5-bisphosphate carboxylaseoxygenase from tobacco, Biochem. Biophys. Res. Commun. 64:97–107.CrossRefGoogle Scholar
  35. Clayton, R. K., 1964, Phototaxis in microorganisms, in: Photophysiology (A. C. Giese, ed.), Vol. 2 pp. 51–77, Academic Press, New York.Google Scholar
  36. Codd, G. A., 1972a, The photoinhibition of malate dehydrogenase, FEBS Lett. 20:211–214.CrossRefGoogle Scholar
  37. Codd, G. A., 1972b, The photoinactivation of tobacco transketolase in the presence of flavin mononucleotide, Z. Naturforsch. Teil B 27:701–704.Google Scholar
  38. Codd, G. A., and Stewart, R., 1980, The photoinactivation of micro-algal ribulose bisphosphate carboxylase: Its physiological and ecological significance, in: The Blue Light Syndrome (H. Senger, ed.), pp. 392–400, Springer-Verlag, Berlin/Heidelberg/New York.CrossRefGoogle Scholar
  39. Conradt, W., 1976: Über die Wirkung kurzwellig-sichtbarer Strahlung auf die Aktivität von Atmungsenzymen bei Chlorella (PEP-Carboxylase, NAD-bzw. NADP-abhängige GAP-Dehydrogenase), Staatsexamensarbeit, Cologne, West Germany.Google Scholar
  40. Conradt, W., and Ruyters, G., 1980, Blue light effects on enzymes of the carbohydrate metabolism in Chlorella, in: The Blue Light Syndrome (H. Senger, ed.), pp. 368–371, Springer-Verlag, Berlin/Heidelberg/New York.CrossRefGoogle Scholar
  41. Daley, L. S., Dailey, F., and Criddle, R. S., 1978, Light activation of ribulose bisphosphate carboxylase. Purification and properties of the enzyme from tobacco Nicotianum tabacum, Plant Physiol. 62:718–722.CrossRefGoogle Scholar
  42. Daley, L. S., Tibbals, H. F., and Theroit, L. J., 1980, Effect of 360 nm light on RuBPCase products in vitro — Role of copper in the reaction, in: The Blue Light Syndrome (H. Senger, ed.), pp. 381–391, Springer-Verlag, Berlin/Heidelberg/New York.CrossRefGoogle Scholar
  43. De Fabo, E., 1980, On the nature of the blue-light photoreceptor: Still an open question, in: The Blue Light Syndrome (H. Senger, ed.), pp. 187–197, Springer-Verlag, Berlin/ Heidelberg/New York.CrossRefGoogle Scholar
  44. De Fabo, E. C., Harding, R. W., and Shropshire, W., Jr., 1976, Action spectrum between 280 and 800 nanometers for the photoinduction of carotenoid biosynthesis in Neurospora crassa, Plant Physiol. 57:440–445.CrossRefGoogle Scholar
  45. Delbrück, M., 1976, Light and life III, Carlsberg Res. Commun. 41:299–309.CrossRefGoogle Scholar
  46. Delbrück, M., Katzir, A., and Presti, D., 1976, Responses of Phycomyces indicating optical excitation of the lowest triplet state of riboflavin, Proc. Natl. Acad. Sci. U.S.A. 73:1969–1973.CrossRefGoogle Scholar
  47. Döhler, G., Bürsteil, H., and Jilg-Winter, G., 1976, Pigment-Zusammensetzung und photosynthetische CO2-Fixierung von Cyanidium caldarium und Phorphyridium aerugineum, Biochem. Physiol. Pflanz. 170:103–110.Google Scholar
  48. Dohrmann, U., and Hertel, R. 1979, In vitro binding of riboflavin and of a riboflavin analog to membranes from maize coleoptiles and Cucurbita hypocotyls, International Conference on the Effect of Blue Light in Plants and Microorganisms, Marburg, July 1979, Abstr. 46.Google Scholar
  49. Downs, R. J., and Siegelmann, H. W., 1963, Photocontrol of anthocyanin synthesis in Milo seedlings, Plant Physiol. 38:25–30.CrossRefGoogle Scholar
  50. Edmunds, L. N., Jr., Apter, R. I., Rosenthal, P. J, Shen, W.-K., and Woodward, J. R., 1979, Light effects in yeast: Persisting oscillations in cell division activity and amino acid transport in cultures of Saccharomyces cerevisiae entrained by light-dark cycles, Photochem. Photobiol. 30:595–601.CrossRefGoogle Scholar
  51. Feierabend, J., and Pirson, A., 1966, Die Wirkung des Lichts auf die Bildung von Photosynthese-Enzymen in Roggenkeimlingen, Z. Pflanzenphysiol. 55:235–245.Google Scholar
  52. Feinleib, M. E., 1978, Photomovement of microorganisms, Photochem. Photobiol. 27:849–854.CrossRefGoogle Scholar
  53. Fischer-Arnold, G., 1963, Untersuchungen über die Chloroplastenbewegung bei Vaucheria sessilis, Protoplasma 56:495–520.CrossRefGoogle Scholar
  54. Fong, F., and Schiff, J. A., 1979, Blue light induced absorbance changes associated with carotenoids in Euglena, Planta 146:119–127.CrossRefGoogle Scholar
  55. Furuya, M., Wada, M., and Kadota, A., 1980, Regulation of cell growth and cell cycle by blue light in Adiantum gametophytes, in: The Blue Light Syndrome (H. Senger, ed.), pp. 119–132, Springer-Verlag, Berlin/Heidelberg/New York.CrossRefGoogle Scholar
  56. Galston, A. W., 1959, Phototropism of stems, roots and coleoptiles, Encycl. Plant Physiol. 17:492–529.Google Scholar
  57. Galston, A. W., 1977, Riboflavin retrospective or déjà-vu in blue, Photochem. Photobiol. 25:503–504.CrossRefGoogle Scholar
  58. Galston, A. W., and Baker, R. S., 1959, Studies on the physiology of light action II. The photodynamic action of riboflavin, Am. J. Bot. 36:773–780.CrossRefGoogle Scholar
  59. Gnanam, A., Mohamed, H., and Seetha, R., 1980, Comparative studies on the effect of ammonia and blue light on the regulation of photosynthetic carbon metabolism in higher plants, in: The Blue Light Syndrome (H. Senger, ed.), pp. 435–443, Springer-Verlag, Berlin/Heidelberg/New York.CrossRefGoogle Scholar
  60. Goldsmith, M. H. M., and Briggs, W. R., 1978, Characterization of light-induced absorbance changes in membrane fractions from corn coleoptiles, Carnegie Inst. Wash, Yearb., 77:347–353.Google Scholar
  61. Goldsmith, M. H. M,, Caubergs, R. J., and Briggs, W. R., 1979, Light-inducible cytochrome reduction in membranes from corn coleoptiles: Cytochrome difference spectra and sensitization by exogenous flavins, Carnegie Inst. Wash. Yearb. 78:118–121.Google Scholar
  62. Goldsmith, M. H. M., Caubergs, R. J., and Briggs, W. R., 1980, Light-inducible cytochrome reduction in membrane preparations from corn coleoptiles. I. Stabilization and spectral characterization of the reaction, Plant Physiol.,in press.Google Scholar
  63. Greene, R. V., and Lanyi, J. K., 1979, Proton movements in response to a light-driven electronic pump for sodium ions in Halobacterium halobium membranes, J. Biol. Chem. 254:10986–10994.Google Scholar
  64. Gressel, J., 1978, Light requirements for the enhanced synthesis of a plastid mRNA during Spirodela greening, Photochem. Photobiol. 27:167–169.CrossRefGoogle Scholar
  65. Gressel, J., 1979, Blue light photoreception, Photochem. Photobiol. 30:749–754.CrossRefGoogle Scholar
  66. Gressel, J., 1980, Blue light and transcription, in: The Blue Light Syndrome (H. Senger, ed.), pp. 133–153, Springer-Verlag, Berlin/Heidelberg/New York.CrossRefGoogle Scholar
  67. Gressel, J., and Galun, E., 1967, Morphogenesis in Trichoderma: Photoinduction and RNA, Dev. Biol. 15:575–598.CrossRefGoogle Scholar
  68. Grishina, G. S., Maleszewski, S., Frankiewicz, A., Voskresenskaya, N. P., and Poskuta, J., 1974, Comparative study of the effect of red and blue light on 14CO2 uptake and carbon metabolism of maize leaves in air and oxygen, Z. Pflanzenphysiol. 73:189–197.Google Scholar
  69. Halldal, P., 1958, Action spectra of phototaxis and related problems in Volvocales, Ulvagamates and Dinophyceae, Physiol. Plant. 11:118–153.CrossRefGoogle Scholar
  70. Halldal, P., 1970, Photobiology, in: Photobiology of Microorganisms (P. Halldal, ed.), pp. 17–55, Wiley-Interscience, New York.Google Scholar
  71. Harding, R. W., 1974, The effect of temperature on photoinduced carotenoid biosynthesis in Neurospora crassa, Plant Physiol. 54:142–147.CrossRefGoogle Scholar
  72. Harding, R. W., and Shropshire, W., Jr., 1980, Photocontrol of carotenoid biogenesis, Annu. Rev. Plant Physiol. 31:217–238.CrossRefGoogle Scholar
  73. Hartmann, K. M., 1977, Aktionsspektroskopie, in: Biophysik (E. Hoppe et al.,eds.), Springer-Verlag, New York.Google Scholar
  74. Hartmann, E., and Schmid, K., 1980, Effects of UV and blue light on the biopotential changes in etiolated hypocotyl hooks of dwarf beans, in: The Blue Light Syndrome (H. Senger, ed.), Springer-Verlag, Berlin/Heidelberg/New York, pp. 221–237.CrossRefGoogle Scholar
  75. Hase, E., 1980, Effects of blue light on greening in microalgae, in: The Blue Light Syndrome (H. Senger, ed.), pp. 512–525, Springer-Verlag, Berlin/Heidelberg/New York.CrossRefGoogle Scholar
  76. Hauschild, A. H. W., Nelson, C. D., and Krokov, G., 1962, The effect of light quality on the products of photosynthesis in green and blue-green algae, and in photosynthetic bacteria, Can. J. Bot. 40:1619–1630.CrossRefGoogle Scholar
  77. Hauschild, A. H. W., Nelson, C. D., and Krokov, G., 1964, Concurrent changes in the products and the rate of photosynthetis in Chlorella vulgaris in the presence of blue light, Naturwissenchaften 51:274.CrossRefGoogle Scholar
  78. Heelis, P. F., Parsons, B. J., Phillips, G. O., and McKellar, J. F., 1978, A laser flash photolysis study of the nature of flavin mononucleotide triplet states and the reactions of the natural forms with acids, Photochem. Photobiol. 28:169–173.CrossRefGoogle Scholar
  79. Hemmerich, P., Massey, V., and Weber, G., 1967, Photo-induced benzyl substitution of flavins by phenylacetate: A possible model for flavorprotein catalysis, Nature 213:728–730.CrossRefGoogle Scholar
  80. Hertel, R. A., Jesaitis, A. J., Dohrmann, U., and Briggs, W. R., 1980, In vitro binding of riboflavin to subcellular particles from maize coleoptiles and Cucurbita hypocotyls, Planta 147:312–319.CrossRefGoogle Scholar
  81. Howes, C. D., and Batra, P. P., 1970, Mechanism of photoinduced carotenoid synthesis: Further studies on the action spectrum and other aspects of carotenogenesis, Arch. Biochem. Biophys. 137:175–180.CrossRefGoogle Scholar
  82. Howes, C. D., Batra, P. P., and Blakeley, C. F., 1969, Absolute requirement for oxygen during illumination for photo-induced carotenoid synthesis, Biochim. Biophys. Acta 189:298–299.CrossRefGoogle Scholar
  83. Jagger, J., 1967, Introduction to Research on Ultraviolet Photobiology, pp. 1–164, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  84. Jayaram, M., Presti, D., and Delbrück, M., 1979, Light-induced carotene synthesis in Phycomyces, Exp. Mycol. 3:42–52.CrossRefGoogle Scholar
  85. Kamiya, A., and Miyachi, S., 1974, Effects of blue light on respiration and carbon dioxide fixation in colorless Chlorella mutant cells, Plant Cell Physiol. 15:927–937.Google Scholar
  86. Kamiya, A., and Miyachi, S., 1975, Blue light-induced formation of phosphoenolpyruvate carboxylase in colorless Chlorella mutant cells, Plant Cell Physiol. 16:729–736.Google Scholar
  87. Klein, O., and Senger, H., 1978, Biosynthetic pathways to δ-aminolevulinic acid induced by blue light in the pigment mutant C-A′ of Scenedesmus obliquus, Photochem. Photobiol. 27:203–208.CrossRefGoogle Scholar
  88. Klemm, E., and Ninnemann, H., 1978, Correlation between absorbance changes and a physiological response induced by blue light in Neurospora, Photochem. Photobiol. 28:227–230.CrossRefGoogle Scholar
  89. Klemm, E., and Ninnemann, H., 1979, Nitrate reductase — A key enzyme in blue lightpromoted conidiation and absorbance change of Neurospora, Photochem. Photobiol. 29:629–632.CrossRefGoogle Scholar
  90. Kowallik, W., 1962, Über die Wirkung des blauen und roten Spektralbereichs auf die Zusammensetzung und Zellteilung synchronisierter Chlorellen, Planta 58:337–365.CrossRefGoogle Scholar
  91. Kowallik, W., 1966, Einfluss verschiedener Lichtwellenlängen auf die Zusammensetzung von Chlorella in Glucosekultur bei gehemmter Photosynthese Planta 69:292–295.CrossRefGoogle Scholar
  92. Kowallik, W., 1969, Der Einfluss von Licht auf die Atmung von Chlorella bei gehemmter Photosynthese Planta 86:50–62.CrossRefGoogle Scholar
  93. Kowallik, W., 1970, Light effects on carbohydrate and protein metabolism in algae, in: Photobiology of Microorganisms (P. Halldal, ed.), Wiley-Interscience, pp. 165-168, New York.Google Scholar
  94. Kowallik, W., and Gaffron, H., 1966, Respiration induced by blue light, Planta 69:92–95.CrossRefGoogle Scholar
  95. Kowallik, W., and Kirst, R., 1975, Über unterschiedliche Temperaturabhängigkeiten des Atmungsgaswechsels einer Chlorophyll-freien Chlorella-Mutante im Dunkel und im Licht, Planta 124:261–266.CrossRefGoogle Scholar
  96. Kowallik, W., and Ruyters, G., 1976, Über Aktivitätssteigerungen der Pyruvatkinase durch Blaulicht oder Glucose bei einer Chlorophyll-freien Chlorella-Mutante, Planta 128:11–14.CrossRefGoogle Scholar
  97. Kowallik, W., and Schätzle, S., 1980, Enhancement of carbohydrate degradation by blue light, in: The Blue Light Syndrome (H. Senger, ed.), pp. 344–360, Springer-Verlag, Berlin/Heidelberg/New York.CrossRefGoogle Scholar
  98. Krotkov, G., 1964, The influence of wavelength of incident light on the path of carbon in photosynthesis, Trans. R. Soc. Can. 4th Ser. 2:205–215.Google Scholar
  99. Kulandaivelu, G., and Sarojini, G., 1980, Blue light induced enhancement in activity of certain enzymes in heterotrophically grown cultures of Scenedesmus obliquus, in: The Blue Light Syndrome (H. Senger, ed.), pp. 372–380, Springer-Verlag, Berlin/ Heidelberg/New York.CrossRefGoogle Scholar
  100. Kumagai, T., 1978, Mycochrome system and conidial development in certain fungi imperfecti, Photochem. Photobiol. 27:371–379.CrossRefGoogle Scholar
  101. Kumagai, T., 1980, Blue and near ultraviolet reversible photoreaction in conidial development of certain fungi, in: The Blue Light Syndrome (H. Senger, ed.), pp. 251–260, Springer-Verlag, Berlin/Heidelberg/New York.CrossRefGoogle Scholar
  102. Lambowitz, A. M., Slayman, C. W., Slayman, C. L., and Bonner, W. R., Jr., 1972, The electron transport components of wild type and poky strains of Neurospora crassa, J. Biol. Chem. 247:1536–1545.Google Scholar
  103. Lang-Feulner, J., and Rau, W., 1975, Redox dyes as artificial photoreceptors in lightdependent carotenoid synthesis, Photochem. Photobiol. 21:179–183.CrossRefGoogle Scholar
  104. Laudenbach, B., and Pirson, A., 1969, Über den Kohlenhydratumsatz in Chlorella unter dem Einfluss von rotem und blauem Licht, Arch. Microbiol. 67:226–242.Google Scholar
  105. Leach, C. M., 1971, A practical guide of the effects of visible and ultraviolet light on fungi, in: Methods in Microbiology (C. Booth ed.), Vol. 4, pp. 609–664, Academic Press, London.Google Scholar
  106. Lemberg, R., and Barrett, J., 1973, Cytochrome, pp. 1–580, Academic Press, London.Google Scholar
  107. Lenci, F., and Colombetti, G., 1978, Photobehaviors of microorganisms. A biophysical approach, Annu. Rev. Biophys. Bioeng. 7:341–361.CrossRefGoogle Scholar
  108. Leong, T.-Y., and Briggs, W. R., 1980, Partial purification and characterization of a blue light-sensitive cytochrome-flavin complex from corn membranes, Carnegie Inst. Wash. Yearb. 79: in press.Google Scholar
  109. Leong, T.-Y., Caubergs, R. J., and Briggs, W. R., 1980, Solubilization of a membrane associated flavin-cytochrome complex from corn, Carnegie Inst. Wash. Yearb. 79: in press.Google Scholar
  110. Lewis, S. C., Epstein, H. T., and Schiff, J. A., 1961, Photooxidation of cytochromes by flavoprotein from Euglena, Biochem. Biophys. Res. Commun. 5:221–225.CrossRefGoogle Scholar
  111. Lipson, E. D., 1980, Sensory transduction in Phycomyces photoresponses, in: The Blue Light Syndrome (H. Senger, ed.), pp. 110–118, Springer-Verlag, Berlin/ Heidelberg/New York.CrossRefGoogle Scholar
  112. Lopez-Diaz, I., and Cerda-Olmedo, E., 1979, Phycomyces mutants defective for the photoinduction of carotene biosynthesis, International Conference on the Effect of Blue Light in Plants and Microorganisms, Marburg, July 1979, Abstr. 74.Google Scholar
  113. Löser, G., and Schäfer, E., 1980, Phototropism in Phycomyces: A photochromic sensor pigment? in: The Blue Light Syndrome (H. Senger, ed.), pp. 244–250, Springer-Verlag, Berlin/Heidelberg/New York.CrossRefGoogle Scholar
  114. Manabe, K., and Poff, K. L., 1978, Purification and characterization of the photoreducible b-type cytochrome from Dictyostelium discoideum, Plant Physiol. 61:961–966.CrossRefGoogle Scholar
  115. Masoner, M., and Kasemir, H., 1975, Control of chlorophyll synthesis by phytochrome. I. The effect of phytochrome on the formation of 5-aminolevulinate in mustard seedlings, Planta 126:111–117.CrossRefGoogle Scholar
  116. Mathews, M. M., 1963, Studies on localization, function and formation of the carotenoid pigments of a strain of Mycobacterium marinum, Photochem. Photobiol. 2:1–8.CrossRefGoogle Scholar
  117. Meisch, H.-U., and Bellmann, I., 1980, Light dependence of vanadium induced formation of chlorophyll and δ-aminolevulinic acid in Chlorella, Z. Pflanzenphysiol. 96:143–151.Google Scholar
  118. Meller, E., and Harel, E., 1978, The pathway of 5-aminolevulinic acid synthesis in Chlorella vulgaris and in Fremyella diplosiphon, in: Chloroplast Development (G. Akoyunoglou and J. H. Arqyrouoi-Akoyunoqlou, eds.), pp. 51–57, Elsevier/North-Holland Amsterdam.Google Scholar
  119. Miyachi, S., 1979, Light-enhanced dark CO2 fixation, Encyclopedia of Plant Physiology (M. Gibbs and E. Latzko, eds.), Vol. 6, pp. 68–76, Springer-Verlag, Berlin/ Heidelberg/New York.Google Scholar
  120. Miyachi, S., and Miyachi, S., 1980, Effect of ammonia on carbon metabolism in photosynthesizing Chlorella vulgaris 11 h: The replacement of blue light by ammonium ion, in: The Blue Light Syndrome (H. Senger, ed.), pp. 429–434, Springer-Verlag, Berlin/Heidelberg/New York.CrossRefGoogle Scholar
  121. Miyachi, S., Tsusuki, M., and Miyachi, S., 1979, Effects of blue light on carbon metabolism, in: International Conference on the Effect of Blue Light in Plants and Microorganisms, Marburg, Germany, July, 1979, Abstract 86.Google Scholar
  122. Miyachi, S., Kamiya, A., and Miyachi, S., 1980a, Effects of blue light on respiration and non-photosynthetic CO2 fixation in Chlorella vulgaris 11 h-cells, in: The Blue Light Syndrome (H. Senger, ed.), pp. 321–328, Springer-Verlag, Berlin/Heidelberg/New York.CrossRefGoogle Scholar
  123. Miyachi, S., Miyachi, S., and Senger, H., 1980b, Effect of blue light on CO2 fixation in heterotrophically grown Scenedesmus obliquus mutant C-2A′, in: The Blue Light Syndrome (H. Senger, ed.), pp. 329–331, Springer-Verlag, Berlin/Heidelberg/New York.CrossRefGoogle Scholar
  124. Mohr, H., 1972, Lectures on Photomorphogenesis, pp. 1–237, Springer-Verlag, New York/Heidelberg/Berlin.CrossRefGoogle Scholar
  125. Munoz, V., and Butler, W., 1975, Photoreceptor pigment for blue light in Neurospora crassa, Plant Physiol. 55:421–426.CrossRefGoogle Scholar
  126. Munoz, V., Brody, S., and Butler, W. L., 1974, Photoreceptor pigment for blue light response in Neurospora crassa, Biochem. Biophys. Res. Commun. 58:322–327.CrossRefGoogle Scholar
  127. Nigon, V., and Heizmann, P., 1978, Morphology, biochemistry and genetics of plastid development in Euglena gracilis, Int. Rev. Cytol. 53:211–290.CrossRefGoogle Scholar
  128. Ninnemann, H., 1979, Photoreceptors for circadian rhythms, in: Photochemical and Photobiological Reviews (K. C. Smith, ed.), Vol. 4, pp. 207–266, Plenum Press, New York.CrossRefGoogle Scholar
  129. Ninnemann, H., 1980, Blue light photoreceptors, Bioscience 30:166–170.CrossRefGoogle Scholar
  130. Ninnemann, H., and Klemm-Wolfgramm, E., 1980, Blue light-controlled conidiation and absorbance change in Neurospora are mediated by nitrate reductase, in: The Blue Light Syndrome (H. Senger, ed.), pp. 238–243, Springer-Verlag, Berlin/ Heidelberg/New York.CrossRefGoogle Scholar
  131. Ninnemann, H., Strasser, R. J., and Butler, W. L., 1977, The Superoxide anion as electron donor to the mitochondrial electron transport chain, Photochem. Photobiol. 26:41–47.CrossRefGoogle Scholar
  132. Nultsch, W., 1973, Phototaxis and photokinesis in bacteria and blue-green algae, in: Behavior of Microorganisms (A. Perez-Miravete, ed.), pp. 70–81, Plenum Press, New York.CrossRefGoogle Scholar
  133. Nultsch, W., 1980, Effects of blue light on movement of microorganisms, in: The Blue Light Syndrome (H. Senger, ed.), pp. 38–49, Springer-Verlag, Berlin/Heidelberg/New York.CrossRefGoogle Scholar
  134. Nultsch, W., and Häder, D. P., 1979, Photomovement of motile microorganisms, Photochem. Photobiol. 29:423–437.CrossRefGoogle Scholar
  135. Oesterhelt, D., and Stoeckenius, W., 1971, Rhodopsin-like protein from the membrane of Halobacterium halobium, Nature New Biol. 233:149–152.Google Scholar
  136. Ogasawara, N., and Miyachi, S., 1969, Effect of wavelength on 14CO2 fixation in Chlorella cells, in: Progress in Photosynthesis Research (H. Metzner, ed.), Vol. 3, pp. 1653–1661. Lichtenberg, Munich.Google Scholar
  137. Ogasawara, N., and Miyachi, S., 1970a, Effects of disalicylidene-propandiamine and near far red light on 14CO2-fixation in Chlorella cells, Plant Cell Physiol. 11:411–416.Google Scholar
  138. Osagawara, N., and Miyachi, S., 1970b, Regulation and CO2 fixation in Chlorella by light of varied wavelength and intensities, Plant Cell Physiol. 11:1–14.Google Scholar
  139. Oh-Hama, T., and Senger, H., 1975, The development of structure and function in the chloroplasts of greening mutants of Scenedesmus III. Biosynthesis of δ-aminolevulinic acid, Plant Cell Physiol. 16:395–405.Google Scholar
  140. Oh-Hama, T., and Senger, H., 1978, Spectral effectiveness in chlorophyll and 5-aminole-vulinic acid formation during regreening of glucose-bleached cells of Chlorella protothecoides, Plant Cell Physiol. 19:1295–1299.Google Scholar
  141. Pickett, J. M., and French, C. S., 1967, The action spectrum for blue light stimulated oxygen uptake in Chlorella, Proc. Natl. Acad. Sci. U.S.A. 57:1587–1593.CrossRefGoogle Scholar
  142. Poff, K. L., and Butler, W., 1974a, Absorbance changes induced by blue light in Phycomyces blakesleeanus and Dictyostelium discoideum, Nature 248:799–801.CrossRefGoogle Scholar
  143. Poff, K. L., and Butler, W. L., 1974b, Spectral characteristics of the photoreceptor pigment of phototaxis in Dictyostelium discoideum, Photochem. Photobiol. 20:241–244.CrossRefGoogle Scholar
  144. Poff, K. L., and Butler, W. L., 1975, Spectral characterization of the photoreducible b-type cytochrome of Dictyostelium discoideum, Plant Physiol. 55:427–429.CrossRefGoogle Scholar
  145. Poff, K. L., Butler, W. L., and Loomis, W. F., 1973, Light induced absorbance changes associated with phototaxis in Dictyostelium, Proc. Natl. Acad. Sci. U.S.A. 70:813–816.CrossRefGoogle Scholar
  146. Porra, R., and Grimme, H., 1974, Chlorophyll synthesis and intracellular fluctuations of δ-aminolaevulinate formation during the regreening of nitrogen-deficient Chlorella fusca, Arch. Biochem. Biophys. 164:312–321.CrossRefGoogle Scholar
  147. Presti, D., and Delbrück, M., 1978, Photoreceptors for biosynthesis, energy storage and vision, Plant Cell Environ. 1:81–100.CrossRefGoogle Scholar
  148. Quail, P. H., 1979, Plant cell fractionation, Annu. Rev. Plant Physiol. 30:425–484.CrossRefGoogle Scholar
  149. Rau, W., 1969, Untersuchungen über die lichtabhängige Carotinoidsynthese, Planta 84:30–42.CrossRefGoogle Scholar
  150. Rau, W., 1975, Zum Mechanismus der Photoregulation von Morphosen am Beispiel der Carotinoidsynthese, Ber. Deutsch. Bot. Ges. 88:45–60.Google Scholar
  151. Rau, W., 1980, Blue light-induced carotenoid biosynthesis in microorganisms, in: The Blue Light Syndrome (H. Senger, ed.), pp. 283–298, Springer-Verlag, Berlin/ Heidelberg/New York.CrossRefGoogle Scholar
  152. Rau, W., Lindemann, L, and Rau-Hund, A., 1968, Untersuchungen über die lichtabhängige Carotinoidsynthese III. Die Farbstoffbildung von Neurospora crassa in Submerskultur, Planta 80:309–316.CrossRefGoogle Scholar
  153. Ried, A., 1968, Interactions between photosynthesis and respiration in Chlorella I. Types of transients of oxygen exchange after short light exposures, Biochim. Biophys. Acta 153:653–663.CrossRefGoogle Scholar
  154. Ried, A., 1969, Über die Wirkung blauen Lichts auf den photosynthetischen O2-Austausch von Chlorella, Planta 87:333–346.CrossRefGoogle Scholar
  155. Rosenberg, E., Mora, C., and Edwards, D. L., 1976, Selection of extra-nuclear mutants of Neurospora crassa, Genetics 83:11–24.Google Scholar
  156. Ruyters, G., 1980, Blue-light effects on enzymes of the carbohydrate metabolism in Chlorella I. Pyruvate kinase, in The Blue Light Syndrome (H. Senger, ed.), Springer-Verlag, Berlin/Heidelberg/New York, pp. 361–367.CrossRefGoogle Scholar
  157. Sagromsky, H., 1956, Zur lichtinduzierten Ringbildung bei Pilzen III, Biol. Zentralbl. 75:385–397.Google Scholar
  158. Salvador, G. F., Beney, G., and Nigon, V., 1976, Control of δ-aminoIevulinic acid synthesis during greening of dark grown Euglena gracilis, Plant Sci. Lett. 6:197–202.CrossRefGoogle Scholar
  159. Sargent, M. L., and Briggs, W. R., 1967, The effects of light on a circadian rhythm of conidiation in Neurospora, Plant Physiol. 42:1504–1510.CrossRefGoogle Scholar
  160. Scherf, H., and Zenk, M. H., 1967, Der Einfluss des Lichtes auf die Flavonoidsynthese und die Enzyminduktion bei Fagopyrum esculentum Moench, Z. Pflanzenphysiol. 57:401–408.Google Scholar
  161. Schiff, J. A., 1978, Photocontrol of chloroplast development in Euglena, in: Chloroplast Development (G. Akoyunoglou and J. H. Argyrouoi-Akoyunoglou), pp. 747–768, Elsevier/North-Holland, Amsterdam.Google Scholar
  162. Schiff, J. A., 1980, Blue light and the photocontrol of chloroplast development in Euglena, in: The Blue Light Syndrome (H. Senger, ed.), pp. 495–511, Springer-Verlag, Berlin/Heidelberg/New York.CrossRefGoogle Scholar
  163. Schmid, G. H., 1969, The effect of blue light on glycolate oxidase of tobacco, HoppeSeyler’s Z. Physiol. Chem. 350:1035–1046.CrossRefGoogle Scholar
  164. Schmid, G. H., 1970, The effects of blue light on some flavin enzymes, Hoppe-Seyler’s Z. Physiol. Chem. 351:575–578.CrossRefGoogle Scholar
  165. Schmid. G. H., 1971, Photoregulation of β, D-glucose oxidase by blue light, Phytochemistry 10:2041–2042.CrossRefGoogle Scholar
  166. Schmid, G. H., 1980, Conformational changes caused by blue light, in: The Blue Light Syndrome (H. Senger, ed.), pp. 198–204, Springer-Verlag, Berlin/Heidelberg/New York.CrossRefGoogle Scholar
  167. Schmid, G. H., and Schwarze, P., 1969, Blue light enhanced respiration in a colorless Chlorella mutant, Z. Physiol. Chem. 350:1513–1520.CrossRefGoogle Scholar
  168. Schmidt, W., 1979, On the environment and rotational motion of amphiphylic flavin in artificial membrane vesicles as studied by fluorescence, J. Membr. Biol. 47:1–25.CrossRefGoogle Scholar
  169. Schmidt, W., 1980a, Physiological bluelight reception, in: Structure and Bonding (J. D. Dunitz, J. B. Goodenough, P. Hemmerich, J. A. Ibers, C. K. Jorgensen, J. B. Neilands, D. Reinen, and R. J. P. Williams, eds.), Vol. 41, pp. 1–44, Springer-Verlag, Berlin/Heidelberg/New York.Google Scholar
  170. Schmidt, W., 1980b, Artificial flavin/membrane systems: A possible model for physiological blue light action, in: The Blue Light Syndrome (H. Senger, ed.), pp. 212–220, Springer-Verlag, Berlin/Heidelberg/New York.CrossRefGoogle Scholar
  171. Schmidt, W., and Butler, W. L., 1976a, Flavin-mediated photoreactions in artificial systems: A possible model for the blue light photoreceptor pigment in living systems, Photochem. Photobiol. 24:71–75.CrossRefGoogle Scholar
  172. Schmidt, W., and Butler, W. L., 1976b, Light-induced absorbance changes in cell-free extracts of Neurospora crassa, Photochem. Photobiol. 24:77–80.CrossRefGoogle Scholar
  173. Schmidt, W., and Hemmerich, P., 1980, On the redox reaction and accessibility of amphiphylic flavins in artificial membrane vesicles as studied by fluorescence, J. Membr. Biol.,in press.Google Scholar
  174. Schmidt, W., Hart, J., Filner, P., and Poff, K. L., 1977a, Specific inhibition of phototropism in corn seedlings, Plant Physiol. 60:736–738.CrossRefGoogle Scholar
  175. Schmidt, W., Thompson, K. S., and Butler, W. L., 1977b, Cytochome b in plasma membrane enriched fractions from several photoresponsive organisms, Photochem. Photobiol. 26:407–411.CrossRefGoogle Scholar
  176. Schneider, H. A. W., 1980, Visible and spectrophotometrically detectable blue-light responses of maize roots, in: The Blue Light Syndrome (H. Senger, ed.), pp. 614–621, Springer-Verlag, Berlin/Heidelberg/New York.CrossRefGoogle Scholar
  177. Schneider, H. A. W., and Bogorad, L., 1978, Light-induced, dark-reversible absorbance changes in roots, other organs, and cell-free preparations, Plant Physiol. 62:577–581.CrossRefGoogle Scholar
  178. Schönbohm, E., 1980, Phytochrome and non phytochrome dependent blue light effects on intracellular movements in freshwater algae, in: The Blue Light Syndrome (H. Senger, ed.), pp. 69–96, Springer-Verlag, Berlin/Heidelberg/New York.CrossRefGoogle Scholar
  179. Schrott, E. L., 1980, Dose response and related aspects of carotenogenesis in Neurospora crassa, in: The Blue Light Syndrome (H. Senger, ed.), pp. 309–318, Springer-Verlag, Berlin/Heidelberg/New York.CrossRefGoogle Scholar
  180. Schwartzbach, S. D., Schiff, J. A., and Goldstein, N. H., 1975, Events surrounding the early development of Euglena chloroplasts V. Control of paramylum degradation, Plant Physiol. 56:313–317.CrossRefGoogle Scholar
  181. Senger, H., and Bishop, N. I., 1968, An action spectrum for nucleic acid formation in an achlorphyllous mutant of Chlorella pyrenoidosa, Biochim. Biophys. Acta 157:417–419.Google Scholar
  182. Senger, H., and Bishop, N. I., 1972, The development of structure and function in chloroplasts of greening mutants of Scenedesmus. I. Formation of chlorophyll, Plant Cell Physiol. 13:633–649.Google Scholar
  183. Senger, H., and Schoser, G., 1966, Die spektralabhängige Teilungsinduktion in mixotrophen Synchronkulturen von Chlorella, Z. Pflanzenphysiol. 54:308–320.Google Scholar
  184. Senger, H., Klein, O., and Dörnemann, D., 1980, The action of blue light on 5-aminolaevulinic acid formation, in: The Blue Light Syndrome (H. Senger, ed.), pp. 541–551, Springer-Verlag, Berlin/Heidelberg/New York.CrossRefGoogle Scholar
  185. Shropshire, W., Jr., 1972, Action spectroscopy, in: Phytochrome (K. Mitrakos and W. Shropshire, eds.), pp. 161–181, Academic Press, New York.Google Scholar
  186. Shropshire, W., Jr., 1980, Carotenoids as primary photoreceptors in blue-light responses, in: The Blue Light syndrome (H. Senger, ed.), pp. 172–186, Springer-Verlag, Berlin/Heidelberg/New York.CrossRefGoogle Scholar
  187. Song, P.-S., 1980, Spectroscopic and photochemical characterization of flavoproteins and carotenoproteins as blue light photoreceptors, in: The Blue Light Syndrome (H. Senger, ed.), pp. 157–171, Springer-Verlag, Berlin/Heidelberg/New York.CrossRefGoogle Scholar
  188. Song, P.-S., and Moore, T. A., 1968, Mechanism of the photodephosphorylation of menadiol diphosphate. A model for biquantum conversion, J. Am. Chem. Soc. 90:6507–6514.CrossRefGoogle Scholar
  189. Song, P.-S, and Moore, T. A., 1974, On the photoreceptor pigment for phototropism and phototaxis: Is a carotenoid the most likely candidate? Photochem. Photobiol. 19:435–441.CrossRefGoogle Scholar
  190. Song, P.-S., Moore, T. A., and Sun, M., 1972, Excited States of some plant pigments, in: Chemistry of Plant Pigments (C. O. Chichester, ed.), pp. 33–74, Academic Press, New York.Google Scholar
  191. Spurgon, S. L., Turner, R. V., and Harding, R. W., 1979, Biosynthesis of phytoene from isopentenyl pyrophosphate by a Neurospora enzyme system, Arch. Biochem. Biophys. 195:23–29.CrossRefGoogle Scholar
  192. Steiner, A. M., 1969, Dose response behavior for polarotropism of the chloronema of the fern Dryopteris Felix-Mas (L.) Schott, Photochem. Photobiol. 9:493–506.CrossRefGoogle Scholar
  193. Steinitz, Y. L., Schiff, J. A., Osafune, T., and Green, M. S., 1980, Cis to trans photoisomerization of ζ-carotene in Euglena gracilis var. bacillaris W3BUL: Further purification and characterization of the photoactivity, in: The Blue Light Syndrome (H. Senger, ed.), pp. 269–280, Springer-Verlag, Berlin/Heidelberg/New York.CrossRefGoogle Scholar
  194. Stewart, R., and Codd, G. A., 1976, The purification and photoregulation of ribulose diphosphate carboxylase from Scenedesmus quadricauda, Plant Physiol. 57(Suppl.):6.Google Scholar
  195. Strasser, R. J., 1980, Bacteriorhodopsin and its position in the blue light syndrome, in: The Blue Light Syndrome (H. Senger, ed.), pp. 25–29, Springer-Verlag, Berlin/ Heidelberg/New York.CrossRefGoogle Scholar
  196. Strasser, R. J., and Butler, W. L., 1980, Interactions of flavins with cytochrome c and oxygen in excited artificial systems, in: The Blue Light Syndrome (H. Senger, ed.), pp. 205–211, Springer-Verlag, Berlin/Heidelberg/New York.CrossRefGoogle Scholar
  197. Tan. K. K., 1978, Light induced fungal development, in: The Filamentous Fungi (J. E. Smith and D. R. Berry, eds.), Vol. 3, pp. 334–356, Wiley, New York.Google Scholar
  198. Tolbert, N. E., 1979, Glycolate metabolism by higher plants and algae, Encyclopedia of Plant Physiology (M. Gibbs and E. Latzko, eds.), Vol. 6, pp. 338–352, Springer-Verlag, Berlin/Heidelberg/New York.Google Scholar
  199. Trinci, A. P. J., and Bunbury, G. H., 1969, Effect of light on growth and carttenogenesis of the tall conidophores of Aspergillus giganteus, Trans. Br. Mycol. Soc. 52:73–86.CrossRefGoogle Scholar
  200. Ulaszewski, S., Mamouneas, T., Shen, W.-K., Rosenthal, P. J., Woodward, J. R., and Edmunds, L. N., Jr., 1979, Light effects in yeast: evidence for participation of cytochromes in photoinhibition of growth and transport in Saccharomyces cerevisiae cultured at low temperature, J. BacterioL 138:523–529.Google Scholar
  201. Voskresenskaya, N. P., 1953, The importance of spectral composition of the light for photosynthetic formation of substances, Dokl. Acad. Nauk SSSR 93:911–914.Google Scholar
  202. Voskresenskaya, N. P., 1972, Blue light and carbon metabolism, Annu. Rev. Plant Physiol. 23:219–234.CrossRefGoogle Scholar
  203. Voskresenskaya, N. P., 1979, Effect of light quality on carbon metabolism, Encyclopedia of Plant Physiology (M. Gibbs and E. Latzko, eds.), Vol. 6, pp. 174–180, Springer-Verlag, Berlin/Heidelberg/New York.Google Scholar
  204. Watanabe, M., Oh-Hama, T., and Miyachi, S., 1980, Light-induced carbon metabolism in an early stage of greening in wild type and mutant C-2A′ cells of Scenedesmus obliquus, in: The Blue Light Syndrome (H. Senger, ed.), pp. 332–343, Springer-Verlag, Berlin/Heidelberg/New York.CrossRefGoogle Scholar
  205. Widell, S., 1980, The effect of detergent treatment on methylene blue sensitized cytochrome b photoreduction in franctions from corn coleoptiles, Physiol. Plant. 48:353–360.CrossRefGoogle Scholar
  206. Widell, S., and Björn, L. O., 1976, Light-induced absorption changes in etiolated coleoptiles, Physiol. Plant. 36:305–309.CrossRefGoogle Scholar
  207. Widell, S., Britz, S. J., and Briggs, W. R., 1978, Some properties of methylene bluemediated cytochrome reduction by red light in particulate fractions isolated from homogenates of corn coleoptiles, Carnegie Inst. Wash. Yearb. 77:344–347.Google Scholar
  208. Widell, S., Brit, S. J., and Briggs, W. R., 1980, Characterization of a red light-induced reduction of a particle-associated b-type cytochrome from corn in the presence of methylene blue, Photochem. Photobiol., 32:669–678.CrossRefGoogle Scholar
  209. Wild, A., and Holzapfel, A., 1980, The effect of blue and red light on the content of chlorophyll, cytochrome f, soluble reducing sugars, soluble proteins and the nitrate reductase activity during growth of the primary leaves of Sinapis alba, in: The Blue Light Syndrome (H. Senger, ed.), pp. 444–451, Springer-Verlag, Berlin/ Heidelberg/New York.CrossRefGoogle Scholar
  210. Woodward, J. R., Cirillo, V. P., and Edmunds, L. N., Jr., 1978, Light effects in yeast: Inhibition by visible light of growth and transport in Saccharomyces cerevisiae grown at low temperature, J. Bacteriol. 133:692–698.Google Scholar
  211. Wormington, W. M., and Weaver, R. F., 1976, Photoreceptor pigment that induces differentiation in the slime mold Physarum polycephalum, Proc. Natl. Acad. Sci. U.S.A. 73:3896–3899.CrossRefGoogle Scholar
  212. Yagi, K., 1980, Flavins and Flavoproteins, Academic Center, Tokyo, in press.Google Scholar
  213. Zalokar, M., 1954, Studies on biosynthesis of carotenoids in Neurospora crassa, Arch. Biochem. Biophys. 50:71–80.CrossRefGoogle Scholar
  214. Zalokar, M., 1955, Biosynthesis of carotenoids in Neurospora. Action spectrum of photoinactivation, Arch. Biochem. Biophys. 56:318–325.CrossRefGoogle Scholar
  215. Zumft, W., Castillo, F., and Hartmann, K. M., 1980, Flavin-mediated photoreduction of nitrate by nitrate reductase of higher plants and microorganisms, in: The Bhte Light Syndrome (H. Senger, ed.), Springer-Verlag, Berlin/Heidelberg/New York, in press.Google Scholar
  216. Zurzycki, J., 1980, Blue light-induced intracellular movements, in: The Blue Light Syndrome (H. Senger, ed.), pp. 50–68, Springer-Verlag, Berlin/Heidelberg/New York.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Horst Senger
    • 1
  • Winslow R. Briggs
    • 2
  1. 1.Fachbereich BiologiePhilipps-Universität MarburgMarburg an der LahnWest Germany
  2. 2.Department of Plant BiologyCarnegie Institution of WashingtonStanfordUSA

Personalised recommendations