DNA Synthesis and DNA Polymerases in Tonsillar Lymphocytes

  • F. Antoni
  • Maria Staub


The genetic message represents the essence of a living system, containing the information necessary for the perpetuation of the species. In eukaryotic cells the genetic message that genes are composed of is the DNA. There is very clear evidence that RNA may also serve as a genetic message in viruses, and it cannot be excluded that certain RNA molecules may have the same role in eukaryotic cells. Genetic information can be transmitted in two ways. One of these is the transfer of DNA molecules from one cell to another: via free DNA (transformation), via viral vector (transduction), or by direct cell contact (conjugation). The three above procedures have been very extensively studied in the haploid prokaryotes. There are reports of successful transfer of bacterial genes to plant cells and cell fusion. The cell fusion may be considered as a form of message transmission. The second way for the transmission of genetic information is the replication of the genetic material, i.e. the process by which one message will be converted into two identical informations. The process of the replication of the genetic material has attracted considerable interest over the past years. Both, prokaryotic and eukaryotic DNA appear to be replicated in essentially the same semiconservative way. Many details of the DNA replication are well known, however, less data are available about how the process is regulated.


Small Lymphocyte Cytoplasmic Enzyme Nuclear Enzyme Direct Cell Contact Genetic Message 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anker, P., Stroun, M. and Maurice, P.A. Cancer Res. 36, 2832–2839 (1976).PubMedGoogle Scholar
  2. Antoni, F. and Staub, M. Eds. Tonsils; Structure, Immunology and Biochemistry. Akadémiai Kiadò, Budapest (1978).Google Scholar
  3. August, C.S., Merler, E., Lucas, D.O. and Janeway, C.A. Cell, Immunolog. 1. 603 (1970).CrossRefGoogle Scholar
  4. Baltimore, D. Nature (Lond.) 248, 409 (1974).CrossRefGoogle Scholar
  5. Bernheim, J.L., Mendelsohn, J., Kelley, M.F. and Dorian, R. Proc. Natl. Acad. Sci. USA 74, 2536–2540 (1977).PubMedCrossRefGoogle Scholar
  6. Bolden, A., Pedrali Noy, G. and Weissbach, A. J. Biol. Chem. 252, 3351 (1977).PubMedGoogle Scholar
  7. Brown, G. and Greaves, M.F. Europ. J. Immunol. 4, 302 (1974).CrossRefGoogle Scholar
  8. Burgess, R.R. Procedure in Nucleic Acid Research, Vol.2. Cantoni, G.L. and Davics, D.R. (Eds.) Academic Press, New York.Google Scholar
  9. Burton, K. Methods in Enzymology (L. Grossmann and K. Moldave, Eds.) Vol. 12B, 163, Academic Press, New York (1968).Google Scholar
  10. Chang, I.M.S. and Bollum, F. J. J. Biol. Chem. 246, 909 (1971).Google Scholar
  11. Chang, I.M.S. and Bollum, F. J. J. Biol. Chem. 247, 7948 (1972).PubMedGoogle Scholar
  12. Coleman, M.S., Hutton, J.J., De Simone, P. and Bollum, F.J. Proc. Nat. Acad. Sci, (Washington) 1, 4404 (1974).CrossRefGoogle Scholar
  13. Craig, R.K., Costello, P.A. and Keir, H.M. Biochem. J. 145, 233 (1975).PubMedGoogle Scholar
  14. Demidenko, O.E., Tsvetkova, S.E. Bulletin of Exp. Biol. and Med. 83, 551–553 (1977).Google Scholar
  15. Faragò, A., Antoni, F. and Fàbiàn, F. Biochem. Biophys. Acta (Amst.) 370, 459 (1974).Google Scholar
  16. Fridlender, B., Fry, M., Bolden, A. and Weissbach, A. Proc. Nat. Acad. Sci. (Washington) 69, 452 (1972).CrossRefGoogle Scholar
  17. Gatien, J.G., Schnesberger, E.E., Parkman, R. and Merler, E. Europ. J. Immunol. 5, 306 (1975).CrossRefGoogle Scholar
  18. Geha, H.S. and Merler, E. Europ. J. Immunol. 4, 193 (1974).CrossRefGoogle Scholar
  19. Greaves, D.C. and Brown, G. J. Immunol. 112, 420 (1974).Google Scholar
  20. Hoesli, D.C., Jones, A.P., Eisenstadt, J.M. and Wakslan, B.N. Int. Archs. Allergy Appl. Immun. 54, 517–526 (1977).CrossRefGoogle Scholar
  21. Holmes, A.M., Heslswood, J.D. and Johnston, J.R. Europ. J. Biochem. 43, 487 (1974).CrossRefGoogle Scholar
  22. Izui, S., Lambert, P.H., Fornié, G.J., Türler, J., Miescher, P.A. J. Exp. Med. 145, 1115–1130 (1977).PubMedCrossRefGoogle Scholar
  23. Lewis, B.J., Abrell, J.W., Smith, R.G. and Gallo, R.C. Science, 183, 867 (1974a).PubMedCrossRefGoogle Scholar
  24. Lewis, B.J., Abrell, J.W., Smith, R.G. and Gallo, R.C. Biochem. Biophys. Acta (Amst.) 349, 148 (1974b).Google Scholar
  25. Loeb, L.A., Fransler, B., Williams, R. and Mazia, D. Exp. Cell. Res. 57, 298 (1969).PubMedCrossRefGoogle Scholar
  26. Lowry, O.H., Rosenbrough, N.J., Farr, A.L. and Randall, R.J. J. Biol, Chem. 193, 265 (1951).Google Scholar
  27. Magnusson, G., Craing, R., Narkhammar, M., Reichard, P., Staub, M. and Warner, H. Cold Spring Harbor Symp. Quant. Biol. 39/2, 227 (1974).CrossRefGoogle Scholar
  28. Matsukage, A., Bohn, E.W. and Wilson, S.H. Proo. Nat. Acad. Sci. (Washington) 71, 578 (1974).CrossRefGoogle Scholar
  29. McCaffrey, R., Smoller, D.F. and Baltimore, D. Proc. Nat. Acad. Sci. (Washington) 70, 521 (1973).CrossRefGoogle Scholar
  30. Merler, E. and Silberschmidt, M. Immunology 22, 281 (1972).Google Scholar
  31. Meuth, M., Aufreiter, E., Reichard, P. Eur. J. Biochem. 71, 39–43 (1976).PubMedCrossRefGoogle Scholar
  32. Moroni, C. and Schuman, G. Nature, 269, 601–602 (1977).CrossRefGoogle Scholar
  33. Piffkò, P., Köteles, G.J. and Antoni, F. Pract. Oto-rhing-laryng. 32, 350 (1970).Google Scholar
  34. Rogers, J.G., Boldt, D., Kornfeld, S., Skinner, Sr.A. and Valeri, G.R. Proc. Natl. Acad. Sci. USA, 69, 1685–1689 (1972).PubMedCrossRefGoogle Scholar
  35. Rogers, J.C. Proc. Natl. Acad. Sci. USA, 73, 3211–3215 (1976).PubMedCrossRefGoogle Scholar
  36. Reichardt, P. Fed. Proc. 37, 9 (1978).Google Scholar
  37. Sarin, P.S. and Gallo, R.C. J. Biol. Chem. 249, 8051 (1974).PubMedGoogle Scholar
  38. Seifert, W.E. and Rudland, P.S. Nature (Lond.) 248, 138 (1974).CrossRefGoogle Scholar
  39. Smith, R.G. and Gallo, R.C. Proc. Nat. Acad. Sci. (Washington) 69, 2879 (1972).CrossRefGoogle Scholar
  40. Spadari, S. and Weissbach, A. J. Molec. Biol. 86, 11 (1974a).PubMedCrossRefGoogle Scholar
  41. Spadari, S. and Weissbach, A. J. Biol. Chem. 249, 5809 (1974b).PubMedGoogle Scholar
  42. Stambrook, P.J. and Sisken, J.E. Biochem, Mol. 15, 246 (1976).Google Scholar
  43. Staub, M. 9th FEBS Meeting, Budapest, Abstracts of Communications, p. 163 (1974).Google Scholar
  44. Staub, M., Warner, H.R. and Reichard, P. Biochem. Biophys. Res. Commun. 46, 1824 (1972).PubMedCrossRefGoogle Scholar
  45. Staub, M., Antoni, F. and Sellyei, M. Biochem. Med. 15, 246 (1976).PubMedCrossRefGoogle Scholar
  46. Staub, M., Faragò, A. and Antoni, F. Physical and Chemical Bases of Biological Information Transfer, First International Colloquium, Varna, Plenum Publ. Corp. New York, p.409 (1975).Google Scholar
  47. Staub, M., Sasvàri-Székely, M., Spasokukotskaja, T., Antoni, F. and Merétey, K. Biochem. Med. 19, 218 (1978a).PubMedCrossRefGoogle Scholar
  48. Staub, M. and Antoni, F. Nucleic Acids Res. 5, 3071 (1978b).PubMedCrossRefGoogle Scholar
  49. Tabata, T., Enomoto, T., Fujimura, N. and Riramatsu, K. Acta otolaryng. (Stockholm) 77, 150 (1974).CrossRefGoogle Scholar
  50. Tyrsted, G. and Munch-Petersen, B. Nucleic Acids Research, 4, 2713 (1977).PubMedCrossRefGoogle Scholar
  51. Weissbach, A. Ann. Rev. Biochem. 46, 25 (1977).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • F. Antoni
    • 1
  • Maria Staub
    • 1
  1. 1.1st Institute of Biochemistry SemmelweisUniversity Medical SchoolBudapestHungary

Personalised recommendations