The Coupled-Channels Integral-Equations Method in the Theory of Low-Energy Electron-Molecule Scattering

  • Michael A. Morrison


The part of this workshop that is devoted to electron-molecule collisions is concerned with two somewhat complimentary classes of approaches to this problem: L2-variational methods, such as the R-matrix and T-matrix methods, and eigenfunction-expansion methods, such as the close-coupling or coupled-channel method. The former approaches are discussed in accompanying articles by Schneider and by Fliflet. In this paper, we shall be concerned with the coupled-channels method for low-energy electron-molecule scattering.1–4 Various aspects of the physics of electron-molecule collisions have been discussed in detail elsewhere. Thus the present review will emphasize techniques for solving the problem. We first describe how to formulate and carry out such a calculation (Secs. II and III) and then suggest where likely pitfalls lie and ways to avoid them (Sec. IV). Since most of the applications to date of the coupled-channel method have employed approximate local potentials, the development in this paper will deal primarily with the solution of differential equations via an integral-equations algorithm. The case of integrodifferential equations (which arise when electron exchange effects are rigorously taken into account) will be discussed briefly in Sec. V.


Integrate Cross Section Internuclear Axis Integration Mesh Angular Basis Rotational Excitation Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A complete set of references for the integral-equations method and various numerical aspects of the coupled-channel approach can be found in Refs. 2–4. Hence no attempt at completeness will be made here.Google Scholar
  2. 2.
    M. A. Morrison, N. F. Lane and L. A. Collins, Phys. Rev. A 15, 286 (1977).CrossRefGoogle Scholar
  3. 3.
    M. A. Morrison, “Theory of Low-energy Electron-Molecule Collision Physics in the Coupled-Channel Method and Application to e-CO2 Scattering”; LA-6328-T; Los Alamos Scientific Laboratory (available from National Technical Information Service, U. S. Dept. of Commerce, 5285 Port Royal Road, Springfield, VA 22161).Google Scholar
  4. 4.
    M. A. Morrison and L. A. Collins, Phys. Rev. a 17, 918 (1978)CrossRefGoogle Scholar
  5. 5.
    W. N. Sams and D. J. Kouri, J. Chem. Phys. 51, 4809 (1969).CrossRefGoogle Scholar
  6. R. G. Newton, Scattering Theory of Waves and Particles, New York: McGraw-Hill, 1966, Chap. 12 and Sec. 17. 1.Google Scholar
  7. 6.
    Cf., E. F. Hayes and D. J. Kouri, Chem. Phys. Lett. 11, 233 (1971)CrossRefGoogle Scholar
  8. E. F. Hayes, C. A. Wells and D. J. Kouri, Phys. Rev. A 4, 1017 (1971)CrossRefGoogle Scholar
  9. J. T. Adams, R. L. Smith and E. F. Hayes, J. Chem. Phys. 61, 2193 (1974).CrossRefGoogle Scholar
  10. 7.
    N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions, Third Edition (Oxford U. P., 1965 ).Google Scholar
  11. 8.
    Cf., S. Hara, J. Phys. Soc. Japan 27, 1009 (1969).CrossRefGoogle Scholar
  12. 9.
    M. A. Crees and D. L. Moores, J. Phys. B 8, L195 (1975).CrossRefGoogle Scholar
  13. 10.
    Cf., N. F. Lane and S. Geltman, Phys. Rev. 160, 53 (1967).CrossRefGoogle Scholar
  14. 11.
    S. Hara, J. Phys. Soc. Japan 22, 710 (1967)CrossRefGoogle Scholar
  15. A. Temkin and K. V. Vasavada, Phys. Rev. 160, 109 (1967).CrossRefGoogle Scholar
  16. 12.
    Cf., P. G. Burke and A. L. SinFailam, J. Phys. B 3, 641 (1970).CrossRefGoogle Scholar
  17. 13.
    D. M. Chase, Phys. Rev. 104, 838 (1956)CrossRefGoogle Scholar
  18. E. S. Chang and A. Temkin, Phys. Rev. Lett 23, 399 (1969).CrossRefGoogle Scholar
  19. 14.
    F. Faisal and A. Temkin, Phys. Rev. Lett. 28, 203 (1971)CrossRefGoogle Scholar
  20. A. Temkin and E. C. Sullivan, Phys. Rev. Lett. 33, 1057 (1974).CrossRefGoogle Scholar
  21. 15.
    E. S. Chang and U. Faro, Phys. Rev. A 6, 173 (1972).CrossRefGoogle Scholar
  22. 16.
    L. A. Collins and D. W. Norcross, Phys. Rev. A 18, 467 (1978).CrossRefGoogle Scholar
  23. 17.
    A. M. Arthurs and A. Dalgarno, Proc. Roy Soc. (London) A 256, 540 (1960).CrossRefGoogle Scholar
  24. 18.
    N. F. Lane and R. J. W. Henry, Phys. Rev. 173, 183 (1968).CrossRefGoogle Scholar
  25. 19.
    B. I. Schneider, Chem. Phys. Lett. 51, 578 (1977).CrossRefGoogle Scholar
  26. 20.
    D. G. Truhlar and F. A. Van-Catledge, J. Chem. Phys. 59, 3207 (1973).CrossRefGoogle Scholar
  27. 21.
    A. Klonover and U. Kaldor, J. Phys. B 11, 1623 (1978).CrossRefGoogle Scholar
  28. 22.
    J. Callaway, R. W. LaBahn, R. T. Pu and W. M. Duxler, Phys. Rev. 168, 12 (1968).CrossRefGoogle Scholar
  29. 23.
    M. A. Morrison and L. A. Collins, Bull. Amer. Phys. Soc. 22, 1331 (1977)Google Scholar
  30. M. A. Morrison and P. J. Hay, Bull. Amer. Phys. Soc. 22, 1331 (1977)Google Scholar
  31. 24.
    M. E. Riley and D. G. Truhlar, J. Chem. Phys. 63, 2182 (1975)CrossRefGoogle Scholar
  32. B. N. Brandsden, M. R. C. McDowell, C. J. Nobel and T. Scott, J. Phys. B 9, 1301 (1976).CrossRefGoogle Scholar
  33. 25.
    P. G. Burke and N. Chandra, J. Phys. B 5, 1696 (1972).CrossRefGoogle Scholar
  34. 26.
    W. G. Richards, T. E. H. Walker, L. Farnell and P. R. Scott, Bibliography of ab initio Molecular Wave Functions. Supplement for 1970–1973 (Clarenden Press, Oxford, 1974) and references therein.Google Scholar
  35. 27.
    F. S. Acton, Numerical Methods That (Usually) Work ( Harper and Row, New York, 1970 ), Chapter 4.Google Scholar
  36. 28.
    T. E. Greville, in Mathematical Methods for Digital Computers, edited by A. Ralston and H. S. Wilf ( Wiley, New York, 1967 ), Vol. II, p. 156.Google Scholar
  37. 29.
    For a recent review of such features in electron-molecule systems see G. J. Schulz, Rev. Mod. Phys. 45, 47 (1973).Google Scholar
  38. 20.
    U. Fano, Comm. At. Mol. Phys. 1, 140 (1970).Google Scholar
  39. 31.
    R. A. White and E. F. Hayes, J. Chem. Phys. 57, 2985 (1972).CrossRefGoogle Scholar
  40. 32.
    L. A. Collins, W. D. Robb and M. A. Morrison, “Low-Energy Electron Scattering by H2 and N2: An Iterative Static-Exchange Calculation,” J. Phys. B 11, L777 (1978).CrossRefGoogle Scholar
  41. 33.
    See the review by P. G. Burke and M. J. Seaton, in Methods in Computational Physics, 10 edited by B. Alder, S. Fernbach and M. Rotenberg (Academic Press, New York, 1971), p. 2 for references and descriptions.Google Scholar
  42. R. Marriot, Proc. Phys. Soc. 72, 121 (1958)CrossRefGoogle Scholar
  43. K. Omidvar, Phys. Rev. A 133, 970 (1964).Google Scholar
  44. 34.
    R. J. W. Henry and N. F. Lane, Phys. Rev. 183, 221 (1969).CrossRefGoogle Scholar
  45. 35.
    E. R. Smith and R. J. W. Henry, Phys. Rev. A 7, 1585 (1973).CrossRefGoogle Scholar
  46. 36.
    M. J. Seaton, Proc. Roy. Soc. A 218, 400 (1953)Google Scholar
  47. T. L. John, Proc. Phys. Soc. (London) 76, 532 (1960).CrossRefGoogle Scholar
  48. 37.
    L. A. Collins, D. W. Norcross and G. Bruno Schmid, “Electron Collisions with Highly Polar Molecules: Integrated and Momentum-Transfer Cross Sections and Conductivity Integrals for KOH and CsOH” (J. Phys. B. accepted for publication).Google Scholar
  49. 38.
    The value of rmax depends on the system symmetry. Thus for e-H2 in ∑u symmetry, we have rmax = 50.0 ao.Google Scholar
  50. 39.
    The value of rmax depends on the system symmetry. Thus for e-H2 in ∑u symmetry, we have rmax = 50.0 ao.Google Scholar
  51. 40.
    In the iterative-static-exchange procedure, which is described in Sec. V, we find that λmaxst = 2lmax is more cost-effective.Google Scholar
  52. 41.
    It should be noted that in general this procedure is not applicable to electron collisions with heteronuclear molecules, where the strong dipole coupling necessitates retention of many partial waves (typically up to 9.= 16).Google Scholar
  53. 42.
    L. A. Collins, W. D. Robb, and M. A. Morrison, Bull. Amer. Phys. Soc. 23, 1082 (1978).Google Scholar
  54. 43.
    See also N. F. Lane and R. J. W. Henry, Phys. Rev. 173, 183 (1968)CrossRefGoogle Scholar
  55. for ab initio calculations on e-H2 collisions and A. Dalgarno and N. Lynn, Proc. Phys. Soc. London A 70 (1957) for e-He scattering.Google Scholar
  56. 44.
    See M. E. Riley and D. G. Truhlar, J. Chem. Phys. 63, 2182 (1975)CrossRefGoogle Scholar
  57. B. N. Bransden, M. R. C. McDowell, C. J. Nobel, and T. Scott, J. Phys. B 9, 1301 (1976).CrossRefGoogle Scholar
  58. 45.
    S. Hara, J. Phys. Soc Jpn. 22, 710 (1967).CrossRefGoogle Scholar
  59. 46.
    K. Smith, R. J. W. Henry, and P. G. Burke, Phys. Rev. 147, 21 (1966).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Michael A. Morrison
    • 1
  1. 1.Department of Physics and AstronomyUniversity of OklahomaNormanUSA

Personalised recommendations