Advertisement

Stieltjes-Tchebycheff Moment-Theory Approach to Molecular Photoionization Studies

  • P. W. Langhoff

Abstract

Difficult problems often require the introduction of unfamiliar strategies in obtaining solutions. The Stieltjes-Tchebycheff (S-T) moment-theory technique1–6 for performing atomic and molecular photoionization and related scattering calculations in Hilbert space was devised to provide cross-sectional values7–30 in the absence of reliable more conventional methods for this purpose. Conventional theoretical approaches to molecular photoionization studies generally require construction in some approximation of scattering eigenfunctions that satisfy appropriate asymptotic boundary conditions. It has proved difficult to construct such scattering functions even in simple static-potential approximations, largely because of the non-central and non-local nature of the molecular field. Consequently, many of the theoretical molecular photoionization studies reported to date involve simplifying approximations designed to avoid or circumvent the latter aspects of the problem. By contrast, finite point-group and electron-exchange symmetries are integral parts of the computational technology of many-electron L2 bound-state electronic structure calculations,31–33 providing considerable motivation to devise related Hilbert-space methods for theoretical investigations of molecular electronic continua.

Keywords

Oscillator Strength Moment Problem Photoionization Cross Section Spectral Moment Photo Ionization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. W. Langhoff, Chem. Phys. Letters 22, 60 (1973).CrossRefGoogle Scholar
  2. 2.
    P. W. Langhoff and C. T. Corcoran, J. Chem. Phys. 61, 146 (1974)CrossRefGoogle Scholar
  3. 3.
    P. W. Langhoff, J. S. Sims, and C. T. Corcoran, Phys. Rev. A 10, 829 (1974).CrossRefGoogle Scholar
  4. 4.
    P. W. Langhoff and C. T. Corcoran, Chem. Phys. Letters 40, 367 (1976).CrossRefGoogle Scholar
  5. 5.
    P. W. Langhoff, C. T. Corcoran, J. S. Sims, F. Weinhold, and R. M. Glover, Phys. Rev. A 14, 1042 (1976).CrossRefGoogle Scholar
  6. 6.
    C. T. Corcoran and P. W. Langhoff, J. Math. Phys. 18, 651 (1977)CrossRefGoogle Scholar
  7. 7.
    G. W. F. Drake, Astrophys. J. 184, 145 (1973).CrossRefGoogle Scholar
  8. 8.
    P. W. Langhoff and S. L. Seidman, Chem. Phys. Letters 27, 195 (1974).CrossRefGoogle Scholar
  9. 9.
    R. F. Stewart, C. Laughlin, and G. A. Victor, Chem. Phys. Letters 29, 353 (1974).CrossRefGoogle Scholar
  10. 10.
    P. W. Langhoff, Int. J. Quantum Chem. S8, 347 (1974).Google Scholar
  11. 11.
    R. K. Nesbet, Phys. Rev. A 14, 1065 (1976).CrossRefGoogle Scholar
  12. 12.
    J. T. Broad and W. P. Reinhardt, Chem. Phys. Letters 37, 212 (1976).CrossRefGoogle Scholar
  13. 13.
    P. W. Langhoff, C. T. Corcoran, and J. S. Sims, Phys. Rev. A 16, 1513 (1977).CrossRefGoogle Scholar
  14. 14.
    P. W. Langhoff, S. R. Langhoff, and C. T. Corcoran, J. Chem. Phys. 67, 1722 (1977)CrossRefGoogle Scholar
  15. 15.
    A. U. Hazi and T. N. Rescigno, Phys. Rev. A 16, 2376 (1977).CrossRefGoogle Scholar
  16. 16.
    P. W. Langhoff, Int. J. Quantum Chem. S11, 301 (1977).Google Scholar
  17. 17.
    T. N. Rescigno, A. U. Hazi, and A. E. Orel, J. Chem. Phys. 68, 5283 (1978).CrossRefGoogle Scholar
  18. 18.
    T. N. Rescigno, C. F. Bender, and B. V. McKoy, Phys. Rev. A 17, 645 (1978).CrossRefGoogle Scholar
  19. 19.
    J. Barsuhn and R. K. Nesbet, J. Chem. Phys. 68, 2783 (1978).CrossRefGoogle Scholar
  20. 20.
    S. V. ONeil and W. P. Reinhardt, J. Chem. Phys. 69, 2126 (1978).CrossRefGoogle Scholar
  21. 21.
    T. N. Rescigno and P. W. Langhoff, Chem. Phys. Letters 51, 65 (1978).CrossRefGoogle Scholar
  22. 22.
    T. N. Rescigno, C. F. Bender, B. V. McKoy, and P. W. Langhoff, J. Chem. Phys. 68, 970 (1978).CrossRefGoogle Scholar
  23. 23.
    N. Padial, G. Csanak, B. V. McKoy, and P. W. Langhoff, J. Chem Phys. 69, 2992 (1978).CrossRefGoogle Scholar
  24. 24.
    P. W. Langhoff, A. E. Orel, T. N. Rescigno and B. V. McKoy, J. Chem. Phys. 69, 4689 (1978).CrossRefGoogle Scholar
  25. 25.
    N. Padial, G. Csanak, B. V. McKoy, and P. W. Langhoff, (to be published)Google Scholar
  26. 26.
    A. Gerwer, C. Asaro, B. V. McKoy, and P. W. Langhoff, J. Chem. Phys. xx, xxxx (1979).Google Scholar
  27. 27.
    A. E. Orel, T. N. Rescigno, B. V. McKoy, and P. W. Langhoff, J. Chem. Phys. xx, xxxx (1979).Google Scholar
  28. 28.
    G. R. J. Williams and P. W. Langhoff, Chem. Phys. Letters 60, 201 (1979).CrossRefGoogle Scholar
  29. 29.
    D. J. Margoliash and P. W. Langhoff, Phys. Rev. xx, xxxx (1979).Google Scholar
  30. 30.
    R. L. Martin and E. R. Davidson, J. Chem. Phys. A xx, xxxx (1979).Google Scholar
  31. 31.
    H. F. Schaefer III, The Electronic Structure of Atoms and Molecules (Addison Wesley, Reading, MA, 1972); Ann. Rev. Phys. Chem. 27, 261 (1976).Google Scholar
  32. 32.
    S. D. Peyerimhoff and R. J. Buenker, Adv. Quantum Chem. 9, 69 (1975).CrossRefGoogle Scholar
  33. 33.
    S. T. Epstein, The Variation Method in Quantum Mechanics (Academic, N.Y., 1974).Google Scholar
  34. 34.
    H. S. Wall, Analytic Theory of Continued Fractions (Van Nostrand, N.Y., 1948).Google Scholar
  35. 35.
    J. A. Shohat and J. D. Tamarkin, The Problem of Moments, Mathematical Surveys 1 (American Mathematical Society, Providence, R. I., 1950), 2nd ed.Google Scholar
  36. 36.
    N. I. Akhiezer, The Classical Moment Problem (Oliver and Boyd, London, 1965).Google Scholar
  37. 37.
    Yu V. Vorobyev, Method of Moments in Applied Mathematics (Gordon and Breach, New York, 1965).Google Scholar
  38. 38.
    E. C. Titchmarsh, Eigenfunction Expansions (Oxford, U.P., Oxford, 1958).Google Scholar
  39. 39.
    P.-O. Löwdin and H. Shull, J. Chem. Phys. 23, 1362 (1955); 30, 617 (1959).Google Scholar
  40. 40.
    L. I. Schiff, Quantum Mechanics (McGraw-Hill, N.Y., 1968).Google Scholar
  41. 41.
    H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-and Two-Electron Atoms (Springer, Berlin, 1957).Google Scholar
  42. 42.
    A. U. Hazi and H. S. Taylor, Phys. Rev. A 1, 1109 (1970).CrossRefGoogle Scholar
  43. 43.
    U. Fano and J. W. Cooper, Rev. Mod. Phys. 40, 441 (1968).CrossRefGoogle Scholar
  44. 44.
    A. Dalgarno, Advan. Phys. 11, 281 (1962).CrossRefGoogle Scholar
  45. 45.
    P. W. Langhoff, S. T. Epstein, and M. Karplus, Rev. Mod. Phys. 44, 602 (1972).CrossRefGoogle Scholar
  46. 46.
    P. W. Langhoff, J. Chem. Phys. 57, 2604 (1972).CrossRefGoogle Scholar
  47. 47.
    A. Dalgarno, Rev. Mod. Phys. 35, 522 (1963).CrossRefGoogle Scholar
  48. 48.
    J. O. Hirschfelder, W. Byers Brown, and S. T. Epstein, Advan. Quantum Chem. 1, 256 (1964).Google Scholar
  49. 49.
    R. Jackiw, Phys. Rev. 157, 1220 (1967).CrossRefGoogle Scholar
  50. 50.
    P. W. Langhoff and M. Karplus, J. Opt. Soc. Am. 59, 863 (1969).CrossRefGoogle Scholar
  51. 51.
    Y. M. Chan and A. Dalgarno, Proc. Phys. Soc. (London) 86, 777 (1965).CrossRefGoogle Scholar
  52. 52.
    R. J. Bell and A. E. Kingston, Proc. Phys. Soc. (London) 88, 901 (1966).CrossRefGoogle Scholar
  53. 53.
    R. E. Johnson, S. T. Epstein, and W. J. Meath, J. Chem. Phys. 47, 1271 (1967).CrossRefGoogle Scholar
  54. 54.
    P. W. Langhoff and M. Karplus, J. Chem. Phys. 52, 1435 (1970).CrossRefGoogle Scholar
  55. 55.
    J. F. Lowry, D. H. Tomboulian, and D. L. Edere, Phys. Rev. 137, A1054 (1965).CrossRefGoogle Scholar
  56. 56.
    J. A. R. Sampson, Adv. At. Mol. Phys. 2, 187 (1966).Google Scholar
  57. 57.
    J. B. West and G. V. Marr, Proc. Roy. Soc. (London) A 349, 397 (1976).CrossRefGoogle Scholar
  58. 58.
    F. Weinhold, J. Chem. Phys. 46, 2448 (1967); 50, 4136 (1969).Google Scholar
  59. 59.
    J. Deltour, Physica 39, 413, 424, 431 (1968).Google Scholar
  60. 60.
    A. Burgess and M. J. Seaton, Mon. Not. R. Astron. Soc. 120, 121 (1960).Google Scholar
  61. 61.
    G. A. Baker, Jr., Essentials of Padé Approximants (Academic, N. Y., 1975).Google Scholar
  62. 62.
    P. W. Langhoff and M. Karplus, in The Padé Approximant in Theoretical Physics, G. A. Baker, Jr., and J. L. Gammel, Editors, (Academic, N. Y. 1970), pp. 41–95.Google Scholar
  63. 63.
    R. G. Gordon, J. Math. Phys. 9, 655 (1968).CrossRefGoogle Scholar
  64. 64.
    J. C. Wheeler and R. G. Gordon, in The Padé Approximant in Theoretical Physics, G. A. Baker, Jr., and J. L. Gammel, Editors, (Academic, N. Y., 1970), pp. 99–128.Google Scholar
  65. 65.
    P. W. Langhoff, R. G. Gordon, and M. Karplus, J. Chem. Phys. 55, 2126 (1971).CrossRefGoogle Scholar
  66. 66.
    C. Blumstein and J. C. Wheeler, Phys. Rev. B 8, 1764 (1973).CrossRefGoogle Scholar
  67. 67.
    R. A. Sack and A. F. Donovan, Numer. Math. 18, 465 (1972).CrossRefGoogle Scholar
  68. 68.
    G. Szego, Orthogonal Polynomials (American Mathematical Society, Providence, 1959).Google Scholar
  69. 69.
    U. W. Hochstrasser, in Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegan (U. S. GOP, Washington, D. C., 1964), Chap. 22.Google Scholar
  70. 70.
    B. H. Armstrong, Phys. Rev. 131, 1132 (1963).CrossRefGoogle Scholar
  71. 71.
    M. Inokuti and Y.-K. Kim, Phys. Rev. 173, 154 (1968).CrossRefGoogle Scholar
  72. 72.
    J. S. Sims, S. A. Hagstrom, and J. R. Rumble, Int. J. Quantum. Chem. 10, 853 (1976).CrossRefGoogle Scholar
  73. 73.
    R. M. Glover and F. Weinhold, J. Chem. Phys. 66, 191 (1977).CrossRefGoogle Scholar
  74. 74.
    A. Dalgarno and S. T. Epstein, J. Chem. Phys. 50, 2837 (1969).CrossRefGoogle Scholar
  75. 75.
    S. Geltman, Astrophys. J. 136, 935 (1962).CrossRefGoogle Scholar
  76. 76.
    S. J. Smith and D. S. Burch, Phys. Rev. 116, 1125 (1959).CrossRefGoogle Scholar
  77. 77.
    J. S. Sims and S. A. Hagstrom, Phys. Rev. A 11, 418 (1975).CrossRefGoogle Scholar
  78. 78.
    J. S. Sims, S. A. Hagstrom, and J. R. Rumble, Phys. Rev. A 13, 242 (1976).CrossRefGoogle Scholar
  79. 79.
    C. A. Martin and W. L. Wiese, Phys. Rev. A 13, 699 (1976).CrossRefGoogle Scholar
  80. 80.
    R. D. Hudson and V. L. Carter, Phys. Rev. 137, A1648 (1965); J. Opt. Soc. Am. 57, 651 (1967).Google Scholar
  81. 81.
    A. K. Bhatia, A. Temkin, and A. Silver, Phys. Rev. A 12, 2044 (1975).CrossRefGoogle Scholar
  82. 82.
    T. N. Chang and R. T. Poe, Phys. Rev. A 11, 191 (1975).CrossRefGoogle Scholar
  83. 83.
    H. Lefebvre-Brion, C. M. Moser, and R. K. Nesbet, J. Chem. Phys. 35, 1702 (1961); J. Mol. Spectro. 13, 418 (1964).Google Scholar
  84. 84.
    H. P. Kelly, Phys. Rev. 136, B896 (1964).CrossRefGoogle Scholar
  85. 85.
    P. W. Langhoff, M. Karplus, and R. P. Hurst, J. Chem. Phys. 44, 505 (1966).CrossRefGoogle Scholar
  86. 86.
    W. J. Hunt and W. A. Goddard, Chem. Phys. Letters 3, 414 (1969); 24, 464 (1974).Google Scholar
  87. 87.
    P. W. Langhoff and S. W. Chan, Mol. Phys. 25, 345 (1973).CrossRefGoogle Scholar
  88. 88.
    L. S. Cederbaum and W. Domcke, Adv. Chem. Phys. 36, 205 (1977).CrossRefGoogle Scholar
  89. 89.
    L. S. Cederbaum, J. Schirmer, W. Domcke, and W. von Niessen, J. Phys. B 10, L549 (1977).CrossRefGoogle Scholar
  90. 90.
    J. Schirmer, L. S. Cederbaum, W. Domcke, and W. von Niessen, Chem. Phys. 26, 149 (1977).CrossRefGoogle Scholar
  91. 91.
    J. Schirmer and L. S. Cederbaum, J. Phys. B 11, 1889 (1978).CrossRefGoogle Scholar
  92. 92.
    J. Schirmer, W. Domcke, L. S. Cederbaum, J. Phys. B 11, 1901 (1978).CrossRefGoogle Scholar
  93. 93.
    T. H. Dunning, Jr., and P. J. Hays, in Modern Theoretical Chemistry, H. F. Schaefer, III, editor (Plenum, N. Y., 1976), Vol. 3, Chap. 1.Google Scholar
  94. 94.
    A. Lofthus and P. H. Krupenie, J. Phys. Chem. Ref. Data 6, 113 (1973).CrossRefGoogle Scholar
  95. 95.
    A. L. Roche and H. Lefebvre-Brion, Chem. Phys. Letters 32, 155 (1975).CrossRefGoogle Scholar
  96. 96.
    J. A. R. Samson, G. N. Haddard, and J. L. Gardner, J. Phys. B 10, 1749 (1977).CrossRefGoogle Scholar
  97. 97.
    E. W. Plummer, T. Gustafsson, W. Gudat, and D. E. Eastman, Phys. Rev. A 15, 2339 (1977).CrossRefGoogle Scholar
  98. 98.
    P. R. Woodruff and G. V. Marr, Proc. Roy. Soc. (London) A 358, 87 (1977).CrossRefGoogle Scholar
  99. 99.
    A. Harnnett, W. Stoll, and C. E. Brion, J. Electron Spectrosc.Relat. Phenom. 8, 367 (1976).CrossRefGoogle Scholar
  100. 100.
    G. R. Wigth, M. J. Wan der Wiel, and C. E. Brion, J. Phys. B 9, 675 (1976).CrossRefGoogle Scholar
  101. 101.
    J. A. R. Samson and J. L. Gardner, J. Electron Spectrosc. Relat. Phenom. 8, 35 (1976).CrossRefGoogle Scholar
  102. 102.
    P. H. Krupenie, Natl. Stand. Ref. Data Ser. Natl. Bur. Stand. 5 (1966).Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • P. W. Langhoff
    • 1
  1. 1.Department of ChemistryIndiana UniversityBloomingtonUSA

Personalised recommendations