Polarization Potentials for Electron Scattering

  • D. G. Truhlar
  • D. A. Dixon
  • Robert A. Eades
  • F. A. Van-Catledge
  • K. Onda

Abstract

Charge polarization effects (due to polarization of the target charge distribution by the incident electron) are important for low and intermediate-energy electron scattering (these energy ranges corresponds to roughly E >~ IP and IP >~ E >~ 10 IP, where E is the impact energy and IP is the target ionization potential). There are two approaches to the inclusion of such polarization effects in electron scattering. In the many-body approach, the scattering wavefunction for the whole system (incident electron plus target) is represented explicitly by basis functions or products of basis functions and numerically determined radial functions. Algebraic variational methods2 and R matrix3 methods are some particularly powerful variants of this approach. In this approach charge polarization effects enter by configuration mixing. Because of this and because polarization effects are of long range, basis sets are required to be large and the scattering wavefunction must be represented over a big region. To avoid the associated computational problems, most electron-molecule scattering calculations using basis functions have been restricted to the single-configuration level, i.e., the static-exchange approximation, in which polarization effects are neglected.4

Keywords

Anisotropy Aniso 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See, e.g., D. G. Truhlar, J. K. Rice, S. Trajmar, and D. C. Cartwright, Chem. Phys. Lett. 9, 299 (1971), and references therein.Google Scholar
  2. 2.
    D. G. Truhlar, J. Abdallah, Jr., and R. L. Smith, Adv. ahem. Phys. 25. 211 (1974).CrossRefGoogle Scholar
  3. 3.
    B. I. Schneider and P. J. Hay, Phys. Rev. A 13, 2049 (1976)CrossRefGoogle Scholar
  4. B. I. Schneider, Chem. Phys. Lett. 51, 578 (1977).CrossRefGoogle Scholar
  5. 4.
    See, e.g., A. W. Fliflet, D. A. Levin, M. Ma, and V. McKoy, Phys. Rev. A 17, 160 (1978).CrossRefGoogle Scholar
  6. 5.
    F. H. M. Faisal, J. Phys. B 3, 636 (1970)CrossRefGoogle Scholar
  7. F. H. M. Faisal and A. L. V. Tench, Comput. Phys. Commun. 2, 261 (1971)CrossRefGoogle Scholar
  8. F. H. M. Faisal and A. L. V. Tench, erratum 5, 396 (1973).Google Scholar
  9. 6.
    D. G. Truhlar, F. A. Van-Catledge, and T. H. Dunning, Jr., J. Chem. Phys. 57, 4788 (1972).CrossRefGoogle Scholar
  10. 7.
    F. A. Gianturco and N. Chandra, in Chemical and Biological Reactivity: The Jerusalem Symposium on Quantum Chemistry and Biochemistry, VI ( Israel Academy of Sciences and Humanities, Jerusalem, 1974 ), p. 219Google Scholar
  11. N. Chandra, Phys. Rev. a 12, 2342 (1975)CrossRefGoogle Scholar
  12. F. A. Gianturco, Comput. Phys. Commun. 11, 237 (1976).CrossRefGoogle Scholar
  13. 8.
    M. A. Morrison, L. A. Collins, and N. F. Lane, Chem. Phys. Lett. 42, 356 (1976)CrossRefGoogle Scholar
  14. M. A. Morrison, N. F. Lane, and L. A. Collins, Phys. Rev. A 15, 2186 (1977).CrossRefGoogle Scholar
  15. 9.
    D. G. Truhlar and F. A. Van-Catledge, J. Chem. Phys. 59, 3207 (1973)CrossRefGoogle Scholar
  16. D. C. Truhlar and F. A. Van-Catledge, J. Chem. Phys. 65, 5536 (1976).CrossRefGoogle Scholar
  17. 10.
    D. G. Truhlar, Chem. Phys. Lett. 15, 486 (1972).CrossRefGoogle Scholar
  18. 11.
    H. S. W. Massey and R. O. Ridley, Proc. Roy. Soc. Lond., Ser. A 69, 659 (1956).Google Scholar
  19. 12.
    R. W. B. Ardill and W. D. Davison, Proc. Roy. Soc. Lond., Sec. A 304, 465 (1968).CrossRefGoogle Scholar
  20. 13.
    R. J. W. Henry and N. F. Lane, Phys. Rev. 183, 221 (1969)CrossRefGoogle Scholar
  21. R. J. W. Henry, Phys. Rev. A 2, 1349 (1970).CrossRefGoogle Scholar
  22. 14.
    P. G. Burke and A.-L. Sinfailam, J. Phys. B 3, 641 (1970).CrossRefGoogle Scholar
  23. 15.
    Y. Itikawa and O. Asihara, J. Phys. Soc. Japan 30, 1461 (1971).CrossRefGoogle Scholar
  24. 16.
    B. D. Buckley and P. G. Burke, J. Phys. B 10, 725 (1977).CrossRefGoogle Scholar
  25. 17.
    M. A. Morrison and L. A. Collins, Phys. Rev. 17, 918 (1978).CrossRefGoogle Scholar
  26. 18.
    S. Hara, J. Phys. Soc. Japan 22, 710 (1967).CrossRefGoogle Scholar
  27. 19.
    D. G. Truhlar, R. E. Poling, and M. A. Brandt, J. Chem. Phys. 64, 826 (1976).CrossRefGoogle Scholar
  28. 20.
    D. G. Truhlar and M. A. Brandt, J. Chem. Phys. 65, 3092 (1976).CrossRefGoogle Scholar
  29. 21.
    L. A. Collins and D. W. Norcross, Phys. Rev. Lett. 38, 1208 (1977).CrossRefGoogle Scholar
  30. 22.
    P. Baille and J. W. Darewych, J. Phys. B 9, Ll (1977).Google Scholar
  31. 23.
    J. B. Furness and I. E. McCarthy, J. Phys. B 6, 2280 (1973).CrossRefGoogle Scholar
  32. 24.
    M. E. Riley and D. G. Truhlar, J. Chem. Phys. 63, 2182 (1975).CrossRefGoogle Scholar
  33. 25.
    R. Vanderpoorten, J. Phys. B 8, 926 (1975).CrossRefGoogle Scholar
  34. 26.
    M. E. Riley and D. G. Truhlar, J. Chem. Phys. 65, 792 (1976).CrossRefGoogle Scholar
  35. 27.
    B. H. Bransden, M. R. C. McDowell, C. J. Noble, and T. Scott, J. Phys. B 9, 1301 (1976).CrossRefGoogle Scholar
  36. 28.
    P. Baille and J. W. Darewych, J. Chem. Phys. 67, 3399 (1977).CrossRefGoogle Scholar
  37. 29.
    D. G. Truhlar and N. A. Mullaney, J. Chem. Phys. 68, 1574 (1978).CrossRefGoogle Scholar
  38. 30.
    E. L. Breig and C. C. Lin, J. Chem. Phys. 43, 3839 (1965).CrossRefGoogle Scholar
  39. 31.
    D. G. Truhlar and J. K. Rice, J. Chem. Phys. 52, 4480 (1970)CrossRefGoogle Scholar
  40. D. G. Truhlar and J. K. Rice, erratum 55, 2005 (1971)Google Scholar
  41. S. Trajmar, D. G. Truhlar, and J. K. Rice, J. Chem. Phys. 52, 4502 (1970)CrossRefGoogle Scholar
  42. S. Trajmar, D. G. Truhlar, and J. K. Rice, erratum 55, 2004 (1971)Google Scholar
  43. S. Trajmar, D. G. Truhlar, J. K. Rice, and H. Kuppermann, J. Chem. Phys. 52, 4516 (1970)CrossRefGoogle Scholar
  44. D. G. Truhlar, Phys. Rev. A 7, 2217 (1973)CrossRefGoogle Scholar
  45. D. G. Truhlar and J. K. Rice, Phys. Lett A 47, 372 (1974).CrossRefGoogle Scholar
  46. 32.
    P. G. Burke and N. Chandra, J. Phys. B 5, 1696 (1972)CrossRefGoogle Scholar
  47. N. Chandra and P. G. Burke, J. Phys. B 6, 2355 (1973)CrossRefGoogle Scholar
  48. N. Chandra, J. Phys. B 8, 1338 (1975).CrossRefGoogle Scholar
  49. 33.
    M. A. Brandt, D. G. Truhlar, and F. A. Van-Catledge, J. Chem. Phys. 64, 4957 (1976)CrossRefGoogle Scholar
  50. M. A. Brandt and D. G. Truhlar, Chem. Phys. 13, 461 (1976)CrossRefGoogle Scholar
  51. D. G. Truhlar, M. A. Brandt, A. Chutjian, S. K. Srivastava, and S. Trajmar, J. Chem. Phys. 65, 2962 (1976).CrossRefGoogle Scholar
  52. 34.
    N. Chandra and A. Temkin, Phys. Rev. A 13, 188 (1976)CrossRefGoogle Scholar
  53. N. Chandra and A. Temkin, J. Chem. Phys. 65, 4537 (1976)CrossRefGoogle Scholar
  54. A. Temkin, Phys. Rev. A 17, 1232 (1978)CrossRefGoogle Scholar
  55. 35.
    M. H. Mittleman and K. M. Watson, Phys. Rev. 113, 198 (1959)CrossRefGoogle Scholar
  56. M. H. Mittleman, Ann. Phys. (N.Y.) 14, 94 (1961).CrossRefGoogle Scholar
  57. 36.
    C. J. Kleinman, Y. Hahn, and L. Spruch, Phys. Rev. 165, 53 (1968).CrossRefGoogle Scholar
  58. 37.
    K. Onda and D. G. Truhlar, J. Chem. Phys. 69, 1361 (1978).CrossRefGoogle Scholar
  59. 38.
    K. Onda and D. G. Truhlar, J. Phys. B. 12, 283 (1979).CrossRefGoogle Scholar
  60. 39.
    H. Kambara and K. Kuchitsu, Jpn. J. Appl. Phys. 11, 609 (1972).CrossRefGoogle Scholar
  61. 40.
    T. W. Shyn, R. S. Stolarski, and G. R. Carignan, Phys. Rev. A 6, 1002 (1972).CrossRefGoogle Scholar
  62. 41.
    T. G. Finn and J. P. Doering, J. Chem. Phys. 63, 4399 (1975).CrossRefGoogle Scholar
  63. 42.
    S. K. Srivastava, A. Chutjian, and S. Trajmar, J. Chem. Phys. 64, 1340 (1976).CrossRefGoogle Scholar
  64. 43.
    R. D. DuBois and M. E. Rudd, J. Phys. B 9, 2657 (1976).CrossRefGoogle Scholar
  65. 44.
    D. G. Truhlar and F. A. Van-Catledge, J. Chem. Phys., in press.Google Scholar
  66. 45.
    R. J. Drachman and A. Temkin, in Case Studies in Atomic Collision Physics, edited by E. W. McDaniel and M. R. C. McDowell ( North-Holland Publishing Co., Amsterdam, 1972 ), p. 399.Google Scholar
  67. 46.
    N. F. Lane and R. J. W. Henry, Phys. Rev. 173, 183 (1968).CrossRefGoogle Scholar
  68. 47.
    S. Hara, J. Phys. Soc. Japan 27, 1262 (1969).CrossRefGoogle Scholar
  69. 48.
    D. G. Truhlar, D. A. Dixon, and R. A. Eades, to be published.Google Scholar
  70. 49.
    K. Onda and D. G. Truhlar, J. Chem. Phys. 70, 1681 (1979).CrossRefGoogle Scholar
  71. 50.
    M. A. Morrison and P. J. Hay, Bull. Amer. Phys. Soc. 22, 1331 (1977).Google Scholar
  72. 51.
    S. Huzinaga, J. Chem. Phys. 42, 1293 (1965).CrossRefGoogle Scholar
  73. 52.
    T. H. Dunning, J. Chem. Phys 53, 2823 (1970).CrossRefGoogle Scholar
  74. 53.
    T. Vladimiroff, J. Phys. Chem. 77, 1983 (1973).Google Scholar
  75. 54.
    H.-J Werner and W. Meyer, Mol. Phys. 31, 855 (1976).CrossRefGoogle Scholar
  76. 55.
    J. C. Slater, Phys. Rev. 36, 57 (1930).CrossRefGoogle Scholar
  77. 56.
    J. A. Pople, D. L. Beveridge, and P. A. Dobosh, J. Chem. Phys. 47, 2026 (1967).CrossRefGoogle Scholar
  78. 57.
    G. Klopman and R. C. Evans, in Semiempirical Methods of Electronic Structure Calculations, Part A, edited by G. A. Segal (Plenum Press, New York, 1977 ), p. 29.CrossRefGoogle Scholar
  79. 58.
    A. Klonover and U. Kaldor, J. Phys. B 11, 1623 (1978).CrossRefGoogle Scholar
  80. 59.
    U. Kaldor, J. Chem. Phys. 62, 4634 (1975).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • D. G. Truhlar
    • 1
  • D. A. Dixon
    • 1
  • Robert A. Eades
    • 1
  • F. A. Van-Catledge
    • 1
  • K. Onda
    • 2
  1. 1.Department of ChemistryUniversity of MinnesotaMinneapolisUSA
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations