Aqueous Two-Phase Systems for the Large-Scale Purification of Enzymes

  • M.-R. Kula
  • A. Buckmann
  • H. Hustedt
  • K. H. Kroner
  • M. Morr


For the production of enzymes the need exists for more efficient isolation and purification techniques. The commercial isolation of intracellular enzymes still resembles normal laboratory procedures, only made larger. For the first steps in isolation, where large quantities and volumes are involved, new processes are particularly needed with the potential for easy scale up and continuous processing under conditions which favor the stability of the biological materials. The removal of cell debris from crude extracts, for example, is still a major technical problem (1). Centrifuges with the necessary capacity have low g-forces and are often inefficient. Filtration as an alternative process is handicaped by the colloidal nature of the suspended materials and by the high viscosity of the extracts, which make filtrations slow and cumbersome. Therefore, we have been searching for a better procedure for the clarification of crude extracts and have investigated a liquid-liquid separation technique for large scale work (2, 3).


Partition Coefficient Phase System Optimal Flow Rate Colloidal Nature Partition Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    NAEHER, G. and THUM, W. in “Industrial Aspects of Biochemistry,” vol. 1 (B. Spencer, ed. ), FEBS 1974, p. 47.Google Scholar
  2. 2.
    KULA, M.-R. and KRONER, K.H. Absti 5 Intei. Feimen. Symp. Beilin 3. 14, 1976.Google Scholar
  3. 3.
    KULA, M.-R., KRONER, K.H., DUREKOVIC, A. and STACH, W. German Offenlegungsschrift 2, 616, 584; 1977.Google Scholar
  4. 4.
    ALBERTSSON, P.A. “Partition of Cell Particles and Macromolecules,” 2nd ed., Wiley, New York, 1971.Google Scholar
  5. 5.
    WALTER, H., ERIKSSON, G., TAUBE, O. and ALBERTSSON, P.A. Expte. Cell Res. 64: 486, 1970.CrossRefGoogle Scholar
  6. 6.
    ALBERTSSON, P.A. Methods in Vilology 2: 303, 1967.Google Scholar
  7. 7.
    PATTERSON, J.B. and STAFFORD, D.W. Biochemistly 9: 1278, 1970.CrossRefGoogle Scholar
  8. 8.
    EISELE, B., RASCHED, I.R. and WALLENFELS, K. Eui. J. Biochem 26: 62, 1972.CrossRefGoogle Scholar
  9. 9.
    HUSTEDT, H., KRONER, K.H. and KULA, M.-R. this volume.Google Scholar
  10. 10.
    BENDER, H. Aich. Mikiobiol. 71: 331, 1970.Google Scholar
  11. 11.
    TAKERKART, G., SEGARD, E. and MONSIGNY, M. FEBS Lett. 42: 218, 1974.CrossRefGoogle Scholar
  12. 12.
    FLANAGAN, S.D. and BARONDES, S.H. J. Biol. Chem. 250: 1484, 1975.Google Scholar
  13. 13.
    FLANAGAN, S.D., TAYLOR, P. and BARONDES, S.H. Natuie 254: 441, 1975.CrossRefGoogle Scholar
  14. 14.
    HUBERT, P., DELLACHERIE, E., NEEL, J. and BAULIEU, E. E. FEBS Lett. 65: 169, 1976.CrossRefGoogle Scholar
  15. 15.
    BUCKMANN, A.F., MORR, M. and KULA, M.-R., this volume.Google Scholar
  16. 16.
    SHANBHAG, V.P. and JOHANSSON, G. Biochem. Biophys. Res. Comm. 61: 1141, 1974 ).CrossRefGoogle Scholar
  17. 17.
    WESTRIN, H., ALBERTSSON, P.A. and JOHANSSON, G. Biochem. Biophys. Acta 436: 696, 1976.CrossRefGoogle Scholar
  18. 18.
    WALTER, H. and KROB, E. FEBS Lett. 61: 290, 1976.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • M.-R. Kula
    • 1
  • A. Buckmann
    • 1
  • H. Hustedt
    • 1
  • K. H. Kroner
    • 1
  • M. Morr
    • 1
  1. 1.Gesellschaft fur Biotechnologische Forschung mbHBraunschweig-StockheimFederal Republic Germany

Personalised recommendations