Properties of Heat Stable Enzymes of Extreme Thermophiles

  • Tairo Oshima


Thermophilic organisms have become the subject of intense research interest in the recent decade. Biochemists are interested in molecular mechanisms of thermophilly and of biological adaptation to high temperatures (1). Thermophiles also are useful materials for the study of such biochemical reactions as protein biosynthesis (2), nucleic acid synthesis (3), and oxidative phosphorylation (4) in which components from mesophilic sources are so labile that the elucidation of reaction properties is often difficult. In addition, thermophiles are fascinating organisms for enzyme engineering since they are resistant to heat and other chemical denaturants. Also, insight into the molecular basis of unusual stabilities of these enzymes will make it possible to find out a new, effective way of chemical modification for making highly stable enzymes from unstable biocatalysts of mesophilic organisms.


Amino Acid Composition Guanidine Hydrochloride Phosphoglycerate Kinase Nucleic Acid Synthesis Enzyme Engineering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ZUBER, H., “Enzymes and Proteins from Thermophilic Microorganisms,” Experientia Supplementum 26, Birkhauser Verlag, Zurich, 1976.Google Scholar
  2. 2.
    FRIEDMAN, S.M., Bacteriol. Rev. 32: 27, 1968.Google Scholar
  3. 3.
    TSUJI, S., SUZUKI, K. & IMAHORI, K., Nature 261: 725, 1976.CrossRefGoogle Scholar
  4. 4.
    YOSHIDA, M., OKAMOTO, H., SONE, N., HIRATA, H. & KAGAWA, Y., Proc. Nat. Acad. Sci. U.S.A. 74: 936, 1977.CrossRefGoogle Scholar
  5. 5.
    OSHIMA, T. & IMAHORI, K., Intern. J. Syzt. Bacteriol. 24: 102, 1974.CrossRefGoogle Scholar
  6. 6.
    OSHIMA, T., Seikagaku 48: 895, 1976.Google Scholar
  7. 7.
    HARRIS, J.I. & WATERS, M., in “The Enzymes,” vol. 13 (Boyer, P.D., ed.), Academic Press, New York, 1976, p. 1.Google Scholar
  8. 8.
    FUJITA, S.C., OSHIMA, T. & IMAHORI, K., Eur. J. Biochem. 64: 57, 1976.CrossRefGoogle Scholar
  9. 9.
    NOJIMA, H., OSHIMA, T. & NODA, H., in preparation.Google Scholar
  10. 10.
    SUZUKI, K. & IMAHORI, K. J. Biochem. 76: 771, 1974.Google Scholar
  11. 11.
    SINGLETON, R. JR. & AMELUNXEN, R.E., Bacteriol. Rev. 37: 320, 1973.Google Scholar
  12. 12.
    NOJIMA, H., IKAI, A., OSHIMA, T. & NODA, H., J. Mol. Biol. 116: 429, 1977.CrossRefGoogle Scholar
  13. 13.
    BRANDTS, J.F., J. Am. Chem. Soc. 86: 4291, 1964.CrossRefGoogle Scholar
  14. 14.
    SUZUKI, K. & HARRIS, J.I., FEBS Lett. 13: 217, 1971.CrossRefGoogle Scholar
  15. 15.
    VELICK, S.F. & FURFINE, C., in “The Enzymes, vol. 7 (P.D. Boyer, H. Lardy, & K. Myrback, eds.) Academic Press, New York, 1963, p. 243.Google Scholar
  16. 16.
    D’ALESSIO, G. & JOSSE, J., J. Biol. Chem. 246: 4326, 1971.Google Scholar
  17. 17.
    SCOPES, R.K., in “The Enzymes,” vol. 8 (P.D. Boyer, ed.) Academic Press, New York, 1973, p. 335.Google Scholar
  18. 18.
    BIGELOW, C.C., J. Theor. Biol. 16: 187, 1967.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Tairo Oshima
    • 1
  1. 1.Mitsubishi-Kasei Institute of Life SciencesMachida, TokyoJapan

Personalised recommendations