Advertisement

An Analysis of Affinity Chromatography Using Immobilised Alkyl Nucleotides

  • P. D. G. Dean
  • D. B. Craven
  • M. J. Harvey
  • C. R. Lowe
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 42)

Abstract

Group specific matrices for affinity chromatography have now received considerable attention (1–9). Some of these studies have provided amongst the best examples of this aspect of affinity chromatography (10). Amongst the group specific matrices and in particular amongst the immobilised cofactors, the nicotinamide nucleotides present a very wide choice of applications and of different enzyme systems to study. However, because of the chemical complexity of the nicotinamide nucleotides, severe restrictions are imposed on the potential methods available for their immobilisation. These nucleotides may be immobilised readily onto cellulose or Sephadex or agarose containing aminocaproic acid (1,11,12). The resultant polymers are almost certainly of undefined nature (13) apart from being contaminated with unreacted carboxyl groups. The former need not necessarily be a drawback; the polymer preparation described by Allen & Majeries (10) does not specify which carboxyl groups of B1 2 are utilised in the linkage to the agarose and this undefined matrix is capable of purification factors of thousands. This is not so with nucleotides where the purification factors rarely exceed fifty times (1,8).

Keywords

Affinity Chromatography Ligand Concentration Column Length Rabbit Muscle Aminocaproic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

LDH

lactate dehydrogenase (H4 — pig heart, M4 — rabbit muscle)

YADH

yeast alcohol dehydrogenase

G6PDH

D-glucose 6-phosphate dehydrogenase

MDH

L-malate dehydrogenase

G3PDH

D-glyceraldehyde 3-phosphate dehydrogenase

GDH

L-glutamate dehydrogenase

GR

glutathione reductase

GK

glycerokinase

MK

myokinase

HK

hexokinase

BSA

bovine serum albumin

N6-AMP

N6-(6-aminohexyl) 5’-AMP

P2-ADP-P1-(6-aminohexyl)

P2-(5’-adenosine)-pyrophosphate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. R. Lowe & P. D. G. Dean (1971) FERS Lett., 14, 313.CrossRefGoogle Scholar
  2. 2.
    R. Collier & G. Kohlhaw (1971) Anal. Biochem., 42, 48.CrossRefGoogle Scholar
  3. 3.
    P. C. H. NewUnderline & N. G. L. Harding (1971) Biochem. J. 124, 1.Google Scholar
  4. 4.
    C. R. Lowe, K. Mosbach & P. D. G. Dean (1972) Biochem. Biophys. Res. Commun. 48, 1004.CrossRefGoogle Scholar
  5. 5.
    K. Mosbach, H. Guilford, R. Ohlsson & M. Scott (1972) Biochem. J. 127, 625.Google Scholar
  6. 6.
    R. Ohlsson, P. Brodelius & K. Mosbach (1972) FEBS Lett., 22, 234.CrossRefGoogle Scholar
  7. 7.
    C. R. Lowe & P. D. G. Dean (1973) Biochem. J., 122, 515.Google Scholar
  8. 8.
    C. R. Lowe, M. J. Harvey, D. B. Craven, M. A. Kerfoot, M. E. Hollows & P. D. G. Dean (1973) Biochem. J., 133, 507.Google Scholar
  9. 9.
    C. R. Lowe, M. J. Harvey, D. B. Craven & P. D. G. Dean (1973) Biochem. J. 133, 499.Google Scholar
  10. 10.
    R. H. Allen & P. W. Majerus (1972) J. Biol. Chem., 247, 7695.Google Scholar
  11. 11.
    C. R. Lowe & P. D. G. Dean (1971) FEBS Lett., 18, 31.CrossRefGoogle Scholar
  12. 12.
    P. -0. Larsson & K. Mosbach (1971) Biotechnol. Bioeng. 13, 393.CrossRefGoogle Scholar
  13. 13.
    P. D. G. Dean & C. R. Lowe (1972) Biochem. J. 127, 11 P.Google Scholar
  14. 14.
    M. K. Weibel, H. H. Weetall & H. J. Bright (1971) Biochem. Biophys. Res. Commun. 44, 347.CrossRefGoogle Scholar
  15. 15.
    J. D. Hocking & J. I. Harris (1972) Biochem. J., 24 P.Google Scholar
  16. 16.
    H. Guilford, P. -0. Larsson & K. Mosbach (1972) Chem. Scripta 2, 165.Google Scholar
  17. 17.
    R. Barker, K. W. Olsen, J. H. Shaper & R. L. Hill (1972) J. Biol. Chem. 247, 7135.Google Scholar
  18. 18.
    O. Berglund & F. Eckstein (1972) Eur. J. Biochem. 28, 492.CrossRefGoogle Scholar
  19. 19.
    R. Lamed, Y. Levin & M. Wilchek (1973) Biochim. Biophys. Acta, 304, 231.CrossRefGoogle Scholar
  20. 20.
    D. B. Craven, M. J. Harvey, C. R. Lowe & P. D. G. Dean (1974) Eur. J. Biochem. 41, 329.CrossRefGoogle Scholar
  21. 21.
    D. B. Craven, M. J. Harvey & P. D. G. Dean (1974) FEBS Lett. 38, 320.CrossRefGoogle Scholar
  22. 22.
    M. C. Hipwell & P. D. G. Dean (manuscript in preparation).Google Scholar
  23. 23.
    P. O’Carra & S. Barry (1972) FEBS Lett. 21, 281.CrossRefGoogle Scholar
  24. 24.
    M. J. Harvey, C. R. Lowe, D. B. Craven & P. D. G. Dean (1974) Eur. J. Biochem. 41, 335.CrossRefGoogle Scholar
  25. 25.
    J. D. Hocking & J. I. Harris (1973) FEBS Lett.Google Scholar
  26. 26.
    C. R. Lowe, M. J. Harvey & P. D. G. Dean (1974) Eur. J. Biochem. 41, 341.CrossRefGoogle Scholar
  27. 27.
    C. R. Lowe, M. J. Harvey & P. D. G. Dean (1974) Eur. J. Biochem. 41, 347.CrossRefGoogle Scholar
  28. 28.
    M. J. Harvey, C. R. Lowe & P. D. G. Dean (1974) Eur. J. Biochem. 41, 353.CrossRefGoogle Scholar
  29. 29.
    C. R. Lowe, M. J. Harvey & P. D. G. Dean (1973) Eur. J. Biochem. (in press) VI.Google Scholar
  30. 30.
    A. D. Winer & G. W. Schwert (1958) J. Biol. Chem. 231, 1065.Google Scholar
  31. 31.
    P. Cuatrecasas & C. B. Anfinsen (1971) Annu. Rev. Biochem. 40, 259.CrossRefGoogle Scholar
  32. 32.
    P. Cuatrecasas (1972). Advan. Enzymol. 36, 29.Google Scholar
  33. 33.
    B. H. J. Hofstee & N. F. Otillio (1973) Biochem. Biophys. Res. Commun. 53, 1137.CrossRefGoogle Scholar
  34. 34.
    P. O’Carra, S.Barry & T. Griffin (1973). Biochem. Soc. Trans. 1, 289.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • P. D. G. Dean
    • 1
  • D. B. Craven
    • 1
  • M. J. Harvey
    • 1
  • C. R. Lowe
    • 1
  1. 1.Dept. of BiochemistryThe UniversityLiverpoolEngland

Personalised recommendations