Non-Specific Binding of Proteins by Substituted Agaroses

  • B. H. J. Hofstee
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 42)


Previous results (1–3) showed that at slightly alkaline pH and at relatively low ionic strength (e.g., 0.01–0.05 M Tris-HCl) a large number of negatively charged but unrelated proteins invariably were strongly bound by agarose (Sepharose 4B) substituted with an n-alkylamine or with 4-phenyl-n-butylamine (PBA).l Un-substituted agarose or agarose treated with CNBr, but without subsequent addition of amine, did not bind these proteins. Positively charged protein species generally showed little affinity for the substituted agaroses. Of the proteins tested, the only exception was α-chymotrypsin which, despite its positive charge, showed strong affinity for the PBA-substituted material. By contrast, strong binding did not occur when the ligand was an nalkylamine.


Ionic Strength Light Absorbance Salt Gradient Original Protein Present Adsorbent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

The abbreviations




bovine serum albumin






7S γ-globulin


ethylene glycol




alkylamine with n straight-chain C-atoms


agarose substituted with Cn


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hofstee, B.H.J., Bioch. Biophys. Res. Comm. 50, 751 (1973).CrossRefGoogle Scholar
  2. 2.
    Hofstee, B.H.J., Anal. Bioch. 52, 430 (1973)CrossRefGoogle Scholar
  3. 3.
    Hofstee, B.H.J., Bioch. Biophys. Res. Comm. 53, 1137 (1973).CrossRefGoogle Scholar
  4. 4.
    Cuatrecasas, P., and Anfinsen, C. B., in “Methods in Enzymology,” Vol. XXII (W. J. Jacoby, Ed.) p. 351, Academic Press, New York (1971).Google Scholar
  5. 5.
    Cuatrecasas, P., J. Biol. Chem. 245, 3059 (1970).Google Scholar
  6. 6.
    Bobb, D., Ann. N.Y. Ac. Sci. 209, 225 (1973).CrossRefGoogle Scholar
  7. 7.
    Cuatrecasas, P. and Parikh, I., Biochemistry 11, 2291 (1972).CrossRefGoogle Scholar
  8. 8.
    McClure, W. O. and Edelman, G. M., Biochemistry 5, 1908 (1966).CrossRefGoogle Scholar
  9. 9.
    Hofstee, B.H.J., J. Biol. Chem. 199, 365 (1952).Google Scholar
  10. 10.
    Jencks, W. P., “Catalysis in Chemistry and Enzymology,” McGraw Hill, 1969.Google Scholar
  11. 11.
    Epstein, H. F., J. Theor. Biol. 31, 69 (1971).CrossRefGoogle Scholar
  12. 12.
    Reynolds, J. A., Herbert, S., Polet, H. and Steinhardt, J., Biochemistry 6, 937 (1967).CrossRefGoogle Scholar
  13. 13.
    Hopper, K. E., Bioch. Biophys. Acta 293, 364 (1973).Google Scholar
  14. 14.
    Schmidt, J. and Raftery, M. A., Biochemistry 12, 852 (1973).CrossRefGoogle Scholar
  15. 15.
    Cuatrecasas, P., Wilcheck, M. and Anfinsen, C. B., Proc. Nat. Ac. Sci. USA 61, 636 (1968).CrossRefGoogle Scholar
  16. 16.
    Stevenson, K. J. and Landman, A., Can. J. Biochem. 49, 119 (1971).CrossRefGoogle Scholar
  17. 17.
    Hofstee, B.H.J., Arch. Bioch. Biophys. 78, 188 (1958).CrossRefGoogle Scholar
  18. 18.
    Tanford, C., J. Am. Chem. Soc. 84, 4240 (1962).CrossRefGoogle Scholar
  19. 19.
    Hofstee, B.H.J., Polymer Preprints, in press.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • B. H. J. Hofstee
    • 1
  1. 1.Biochemistry DivisionPalo Alto Medical Research FoundationPalo AltoUSA

Personalised recommendations