Advertisement

Use of Immobilized Enzymes for Synthetic Purposes

  • David L. Marshall
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 42)

Abstract

Although considerable interest has been shown in the application of immobilized enzyme technology, comparatively little attention has been devoted to those enzymes or enzyme systems involved in synthesis of complex substances from simple precursors. For very valid economic reasons, the main industrial interest has been on enzymes which catalyze degradative reactions such as starch or protein hydrolysis.

Keywords

Immobilize Enzyme Soluble Enzyme Triose Phosphate Isomerase Triose Phosphate Dihydroxyacetone Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Porath, R. Axen, and S. Ernbach, Nature, 215, 1491 (1967).CrossRefGoogle Scholar
  2. 2.
    R. Haynes and K. Walsh, Biochem. Biophys. Res. Commun., 36, 235 (1969).CrossRefGoogle Scholar
  3. 3.
    P. Robinson, P. Dunhill, and M. Lilly, Biochem. Biophys. Acta, 242 659 (1971).Google Scholar
  4. 4.
    T. Sato, T. Mori, T. Tosa, and I. Chibata, Arch. Biochem. Biophys., 147, 788 (1971).CrossRefGoogle Scholar
  5. 5.
    A. Patchornik, U.S. Patent 3,278, 392 (1966).Google Scholar
  6. 6.
    A. N. Emery, The Chem. Engineer, 71 (1972).Google Scholar
  7. 7.
    H. Nilsson, R. Mosbach, and K. Mosbach, Biochem. Biophys. Acta, 268, 253 (1972).Google Scholar
  8. 8.
    J. K. Inman and H. M. Dintzis, Biochemistry, 8, 4074 (1969).CrossRefGoogle Scholar
  9. 9.
    D. L. Gardner, R. D. Falb, B. C. Kim, and D. C. Emmerling, Trans. Am. Soc. Artif. Organs, 17, 239 (1971).Google Scholar
  10. 10.
    H. N. Stokes, Am. Chem. J., 15, 198 (1973).Google Scholar
  11. 11.
    J. R. Stevens-Clark, M. C. Theisen, K. A. Conklin, and R. A. Smith, J. Biol. Chem., 243, 4468 (1968).Google Scholar
  12. 12.
    D. L. Marshall, Biotech. Bioeng., 15, 447 (1973).CrossRefGoogle Scholar
  13. 13.
    D. L. Marshall and J. L. Walter, Carbohyd. Res., 25, 489 (1972).CrossRefGoogle Scholar
  14. 14.
    K. Mosbach and B. Mattiasson, Acta Chem. Scand., 24, 2093 (1970).CrossRefGoogle Scholar
  15. 15.
    W. W. C. Chan and H. M. Mawer, Arch. Biochem. Biophys., 149, 136 (1972).CrossRefGoogle Scholar
  16. 16.
    S. Traniello, E. Melloni, S. Pontremoli, C. Sia, and B. Horecker, Arch. Biochem. Biophys., 149, 222 (1972).CrossRefGoogle Scholar
  17. 17.
    K. Nakashima, B. Horecker, and S. Pontremoli, Arch. Biochem. Biophys., 141, 579 (1970).CrossRefGoogle Scholar
  18. 18.
    C. K. Colton and C. M. Whitesides, 40th Annual Chemical Engineering Symposium, Purdue University, Jan. 23–24, 1974.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • David L. Marshall
    • 1
  1. 1.Battelle, Columbus LaboratoriesColumbusUSA

Personalised recommendations