Optimization of Activities of Immobilized Lysozyme, α-Chymotrypsin, and Lipase

  • Rathin Datta
  • David F. Ollis
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 42)

Abstract

Two areas of recent development are enzyme immobilization on solid matrices (1) and chemical modification of proteins by soluble reagents (2). Surprisingly, in development of optimum immobilization recipes, there appear to have been no attempts to correlate results between these clearly related areas of enzyme catalysis. As the specific activity (rate per enzyme) of soluble modified enzymes is easily determined by comparison with that of immobilized enzymes, it may be expected that the existence of such correlations would prove a useful screening device for new immobilization recipes. Prior to presenting this study, several pertinent papers are summarized.

Keywords

Nitrite Immobilization Lysine Trypsin Polyacrylamide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldman, R., Goldstein, L., and Katchalski, E., in “Biochemical Aspects of Reactions on Solid Supports”, G.R. Stark, Ed., p. 1, Academic Press, New York, 1971.Google Scholar
  2. 2.
    Means, G.E., and Feeney, R.E., “Chemical Modification of Proteins”, Holden-Day, Inc., 1971.Google Scholar
  3. 3.
    Silman, I.H., and Katchalski, E., Ann. Rev. of Biochem. 35, 873 (1966).CrossRefGoogle Scholar
  4. 4.
    Barker, S.A., Somers, P.J., Epton, R., and Melaren, J.V., Carbohydrate Res. 14, 287 (1970).CrossRefGoogle Scholar
  5. 5.
    Martensson, K., and Mosbach, K., Biotech. and Bioengg. 14, 715 (1972).CrossRefGoogle Scholar
  6. 6.
    Zabriskie, D., O11is, D., and Burger, M.M., Biotech. and Bioengg. (in press).Google Scholar
  7. 7.
    Datta, R., Armiger, W., and Ollis, D.F., Biotech. and Bioengg. (in press).Google Scholar
  8. 8.
    Haurowitz, F., “Immunochemistry and the Biosynthesis of Antibodies”, p. 18, Interscience, 1968.Google Scholar
  9. 9.
    Inman, J.K., and Dintzis, H.M., Biochemistry 8, 10, 4074 (1969).CrossRefGoogle Scholar
  10. 10.
    Hummel, B.C.W., Can. J. Biochem. Physiol. 37, 1393 (1959).CrossRefGoogle Scholar
  11. 11.
    Oppenheimer, H.L., Labouesse, B., and Hess, G.P., J. Biol. Chem. 241, 2720 (1966).Google Scholar
  12. 13.
    Belenkii, B.G., and Drestova, V.A., Biokhimiya 30, 878 (1965).Google Scholar
  13. 14.
    Maeda, H., and Ishida, N., Biochem. Biophys. Acta 147, 597 (1967).Google Scholar
  14. 15.
    Fraenkel-Conrat, H., Methods Enzymol. 4, 247 (1959).CrossRefGoogle Scholar
  15. 16.
    Holzwarth, G., and Doty, P., JACS 87, 218 (1965).CrossRefGoogle Scholar
  16. 17.
    Yang, J.T., “Conformation of Biopolymers”, Vol. 1, G.N. Ramachandran, ed., p. 157, Academic Press, 1967.Google Scholar
  17. 18.
    Kagan, H.M., and Vallee, B.L., Biochemistry 8, 11 (1969).CrossRefGoogle Scholar
  18. 19.
    Saxena, V.P., and Wetlaufer, D.B., Biochemistry 9, 25, 5015 (1970).CrossRefGoogle Scholar
  19. 20.
    Pecheré, J., Dixon, G.H., Maybury, R.H., and Neurath, H., J. Biol. Chem. 233, 1364 (1958).Google Scholar
  20. 21.
    Ollis, D.F., Datta, R., and Cox, E.C. (submitted to Science).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Rathin Datta
    • 1
  • David F. Ollis
    • 1
  1. 1.Department of Chemical EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations