Transport pp 163-194 | Cite as

Electrophysiological and Optical Methods for Studying the Excitability of the Nerve Membrane

  • Ichiji Tasaki
  • Kenneth Sisco


This chapter is devoted mainly to methods of preparing various types of excitable tissue for electrophysiological and optical investigations. Attempts are also made to explain how several different types of electrophysiological observations can be made using such tissue. In writing this chapter, the authors have assumed that most of the readers have never witnessed nerve fiber dissection of frog or squid. The authors had two objectives in preparing this chapter: (1) to give some idea of the technical problems which may be encountered by those who plan to work in this field of biological science and (2) to provide insight to investigators who are presently facing difficulties of some kind in their neurobiologically oriented research. The illustrations are designed to give readers a clear and correct image of the procedures involved.


Nerve Fiber Giant Axon Excitable Membrane Axon Membrane Squid Giant Axon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, E. D., and Bronk, D. W., 1928, The discharge of impulses in motor nerve fibres. I. Impulses in single fibres of the phrenic nerve, J. Physiol. (London) 66:81.Google Scholar
  2. Arnold, J. M., Gilbert, D. L., Daw, N. W., Summers, W. C., Manalis, R. S., and Lasek, R. J., 1974, A Guide to Laboratory Use of the Squid Loligo pealei, Marine Biological Laboratory, Woods Hole, Mass.CrossRefGoogle Scholar
  3. Baker, P. F., Hodgkin, A. L., and Shaw, T. I., 1961, Replacement of protoplasm of a giant nerve fibre with artificial solutions, Nature 190:885.PubMedCrossRefGoogle Scholar
  4. Baker, P. F., Hodgkin, A. L., and Shaw, T. I., 1962, The effects of changes in internal ionic concentrations on the electrical properties of perfused giant axons, J. Physiol. (London) 164:355.Google Scholar
  5. Berestovsky, G. N., Lunevsky, V. Z., Musienko, V. S., and Razhin, V. D., 1969, Rapid changes in birefringence of the nerve fiber membrane, Dokl. Acad. Nauk SSSR 189:203.Google Scholar
  6. Berestovsky, G. N., Frank, G. M., Liberman, E. A., Lunevsky, V. Z., and Razhin, V. D., 1970, Electrooptical phenomena in bimolecular phospholipid membranes, Biochim. Biophys. Acta 219:263.PubMedCrossRefGoogle Scholar
  7. Bernstein, J., 1902, Untersuchungen zur Thermodynamik der bioelektrischen Ströme, Pfluegers Arch. Gesamte Physiol. 92:521.CrossRefGoogle Scholar
  8. Binstock, L., and Goldman, L., 1969, Current-and voltage-clamped studies on Myxicola giant axons, J. Gen. Physiol. 54:730.PubMedCrossRefGoogle Scholar
  9. Born, M., 1933, Optik, Springer, Berlin.CrossRefGoogle Scholar
  10. Brand, L., and Gohlke, J. R., 1972, Fluorescence probes for structure, Ann. Rev. Biochem. 41:843.PubMedCrossRefGoogle Scholar
  11. Brand, L., Seliskar, C. J., and Turner, D. C., 1971, The effects of chemical environment on fluorescent probes, in: Probes of Structure and Function of Macromolecules and Membranes, Vol. 1 (B. Chance, C.-P. Lee, and J. K. Blasie, eds.), p. 17, Academic Press, New York.Google Scholar
  12. Cavanaugh, G. M. (ed.), 1956, Marine Biological Laboratory: Formulae and Methods, Woods Hole, Mass.Google Scholar
  13. Cohen, L., Keynes, R. D., and Hille, E., 1968, Light scattering and birefringence during nerve activity, Nature 218:433.CrossRefGoogle Scholar
  14. Cohen, L. B., Hille, B., Keynes, R. D., Landowne, D., and Rojas, E., 1971, Analysis of the potential-dependent changes in optical retardation in the squid giant axon, J. Physiol. (London) 218:205.Google Scholar
  15. Cohen, L. B., Keynes, R. D., and Landowne, D., 1972a, Changes in light scattering that accompany the action potential in squid giant axons: Potential-dependent components, J. Physiol. (London) 224:701.Google Scholar
  16. Cohen, L. B., Keynes, R. D., and Landowne, D., 1972b, Changes in axon light scattering that accompany the action potential: Current-dependent components, J. Physiol. (London) 224:727.Google Scholar
  17. Cohen, L. B., Salzberg, B. M., Davila, H. V., Ross, W. N., Landowne, D., Waggoner, A. S., and Wang, C.-H., 1974, Changes in axon fluorescence during activity: A search for useful probes, J. Membr. Biol. 19:1.PubMedCrossRefGoogle Scholar
  18. Davies, P. W., 1961, A method for measuring membrane potential of intracellularly perfused single skeletal muscle fibers, Fed. Proc. 20:142.Google Scholar
  19. Davila, H. V., Salzberg, B. M., Cohen, L. B., and Waggoner, A. S., 1973, A large change in axon fluorescence that provides a promising method of measuring membrane potential, Nature New Biol. 241:159.PubMedGoogle Scholar
  20. Fishman, H. M., 1970, Direct and rapid description of the individual ionic currents of squid axon membrane by ramp potential control, Biophys. J. 10:799.PubMedCrossRefGoogle Scholar
  21. Frankenhaeuser, B., 1957, A method for recording resting and action potentials in the isolated myelinated nerve fibre of the frog, J. Physiol. (London) 135:550.Google Scholar
  22. Furusawa, K., 1929, The depolarization of crustacean nerve by stimulation or oxygen want, J. Physiol. (London) 67:325.Google Scholar
  23. Hallett, M., Schneider, A. S., and Carbone, E., 1972, Tetracycline fluorescence as calcium-probe for nerve membrane with some model studies using erythrocyte ghosts, J. Membr. Biol. 10:31.PubMedCrossRefGoogle Scholar
  24. Hartline, H., 1938, The response of single optic nerve fibers of the vertebrate eye to illumination of the retina, Am. J. Physiol. 121:400.Google Scholar
  25. Inoue, I., Ishima, Y., Horie, H., and Takenaka, T., 1971, Properties of excitable membrane produced on the surface of protoplasmic drop in Nitella, Proc. Jp. Acad. 47:549.Google Scholar
  26. Inoue, I., Ueda, T., and Kobatake, Y., 1973, Structure of excitable membranes formed on the surface of protoplasmic drops isolated from Nitella. I. Conformation of surface membrane determined from the refractive index and from enzyme actions, Biochim. Biophys. Acta 298:653.PubMedCrossRefGoogle Scholar
  27. Inoue, I., Tasaki, I., and Kobatake, Y., 1974, A study of the effects of externally applied sodium-ions and detection of spatial non-uniformity of the squid axon membrane under internal perfusion, Biophys. Chem. 2:116.PubMedCrossRefGoogle Scholar
  28. Johnson, F. H., and Haneda, Y., 1966, Bioluminescence in Progress, pp. 35–52, Princeton University Press, Princeton, N.J.Google Scholar
  29. Kato, G., 1934, The Microphysiology of Nerve, Maruzen, Tokyo.Google Scholar
  30. Ling, G. N., 1960, The interpretation of selective ionic permeability and cellular potentials in terms of the fixed charge-induction hypothesis, J. Gen. Physiol. Suppl. 43:149.CrossRefGoogle Scholar
  31. McClure, W. O., and Edelman, G. M., 1966, Fluorescent probes for conformational states of proteins. I. Mechanism of fluorescence of 2-p-toluidinylnaphthalene-6-sulfonate, a hydrophobic probe, Biochemistry 5:1908.PubMedCrossRefGoogle Scholar
  32. Oikawa, T., Spyropoulos, C. S., Tasaki, I., and Teorell, T., 1961, Methods for perfusing the giant axon of Loligo pealei, Acta Physiol. Scand. 52:195.PubMedCrossRefGoogle Scholar
  33. Osterhout, W., and Hills, S., 1938, Calculations of bioelectric potentials, J. Gen. Physiol. 22:541.Google Scholar
  34. Passo, H., and Stämpfli, R. (ed.), 1969, Laboratory Techniques in Membrane Biophysics, Springer, Berlin.Google Scholar
  35. Radda, G. K., and Vanderkooi, J., 1972, Can fluorescent probes tell us anything about membranes? Biochim. Biophys. Acta 265:509.CrossRefGoogle Scholar
  36. Robinson, R. A., and Stokes, R. H., 1959, Electrolyte Solutions, 2nd ed., Butterworth, London.Google Scholar
  37. Salzberg, B. M., Davila, H. V., and Cohen, L. B., 1973, Optical recording of impulses in individual neurones of an invertebrate central nervous system, Nature 246:508.PubMedCrossRefGoogle Scholar
  38. Sato, H., Tasaki, I., Carbone, E., and Hallett, M., 1973, Changes in axon birefringence associated with excitation: Implications for the structure of the axon membrane, J. Mechanochem. Cell Motil. 2:209.PubMedGoogle Scholar
  39. Shrager, P., Macey, R., and Strickholm, A., 1969, Internal perfusion of crayfish giant axons: Action of tannic acid, DDT, and TEA, J. Cell. Physiol. 74(1):77.CrossRefGoogle Scholar
  40. Stämpfli, R., 1959, Is the resting potential of Ranvier nodes a potassium potential? Ann. NY. Acad. Sci. 81:265.CrossRefGoogle Scholar
  41. Stryer, L., 1968, Fluorescence spectroscopy of proteins, Science 162:526.PubMedCrossRefGoogle Scholar
  42. Tasaki, I., 1939, The strength—duration relation of the normal polarized and narcotized nerve fiber, Am. J. Physiol. 125:367.Google Scholar
  43. Tasaki, I., 1953, Nervous Transmission, Charles C. Thomas, Springfield, Ill.Google Scholar
  44. Tasaki, I., 1968, Nerve Excitation: A Macromolecular Approach, Charles C. Thomas, Springfield, Ill.Google Scholar
  45. Tasaki, I., and Frank, K., 1955, A measurement of the action potential of myelinated nerve fiber, Am. J. Physiol. 182:572.PubMedGoogle Scholar
  46. Tasaki, I., and Singer, I., 1966, Membrane macromolecules and nerve excitability: A physico-chemical interpretation of excitation in squid giant axons, Ann. N. Y. Acad. Sci. 137:792.PubMedCrossRefGoogle Scholar
  47. Tasaki, I., Watanabe, A., and Takenaka, T., 1962, Resting and action potential of intra-cellularly perfused squid giant axons, Proc. Natl. Acad. Sci. (USA) 48:1177.CrossRefGoogle Scholar
  48. Tasaki, I., Singer, I., and Takenaka, T., 1965, Effects of internal and external ionic environment on excitability of squid giant axon, J. Gen. Physiol. 48:1095.PubMedCrossRefGoogle Scholar
  49. Tasaki, I., Watanabe, A., Sandlin, R., and Carnay, L., 1968, Changes in fluorescence turbidity and birefringence associated with nerve excitation, Proc. Natl. Acad. Sci. (USA) 61:883.CrossRefGoogle Scholar
  50. Tasaki, I., Carnay, L., Sandlin, R., and Watanabe, A., 1969a, Fluorescence changes during conduction in nerves stained with acridine orange, Science 163:683.PubMedCrossRefGoogle Scholar
  51. Tasaki, I., Carnay, L., and Watanabe, A., 1969b, Transient changes in extrinsic fluorescence of nerve produced by electric stimulation, Proc. Natl. Acad. Sci. (USA) 64:1362.CrossRefGoogle Scholar
  52. Tasaki, I., Watanabe, A., and Hallett, M., 1972, Fluorescence of squid axon membrane labelled with hydrophobic probes, J. Membr. Biol. 8:109.PubMedCrossRefGoogle Scholar
  53. Tasaki, I., Carbone, E., Sisco, K., and Singer, I., 1973a, Spectral analyses of extrinsic fluorescence of the nerve membrane labeled with aminonaphthalene derivatives, Biochim. Biophys. Acta 323:220.PubMedCrossRefGoogle Scholar
  54. Tasaki, I., Hallett, M., and Carbone, E., 1973, Further studies of nerve membranes labeled with fluorescent probes, J. Membr. Biol. 11:353.PubMedCrossRefGoogle Scholar
  55. Tasaki, I., Sisco, K., and Warashina, A., 1974, Alignment of anilinonaphthalenesulfonate and related fluorescent probe molecules in squid axon membrane and in synthetic polymers, Biophys. Chem. 2:316.PubMedCrossRefGoogle Scholar
  56. Teorell, T., 1953, Transport processes and electrical phenomena in ionic membranes, Progr. Biophys. 3:305.Google Scholar
  57. von Muralt, A., 1971, “Optical spike” during excitation in peripheral nerve, p. 638, Abst. 25th Int. Physiol. Congr., Munich.Google Scholar
  58. Watanabe, A., Terayama, S., and Nagano, M., 1973, Axoplasmic origin of the birefringence change associated with excitation of a crab nerve, Proc. Jpn. Acad. 49:470.Google Scholar
  59. Weber, G., 1972, Uses of fluorescence in biophysics: Some recent developments, Ann. Rev. Biophys. Bioeng. 1:553.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Ichiji Tasaki
    • 1
  • Kenneth Sisco
    • 1
  1. 1.Laboratory of NeurobiologyNational Institute of Mental HealthBethesdaUSA

Personalised recommendations