Advertisement

Transport pp 117-162 | Cite as

Use of Isolated Membrane Vesicles in Transport Studies

  • Joy Hochstadt
  • Dennis C. Quinlan
  • Richard L. Rader
  • Chien-Chung Li
  • Diana Dowd

Abstract

Isolated membrane vesicles represent one of the simplest systems in which the transport processes remain intact and have therefore provided considerable information on the structure, function, and regulation of transport systems. Although whole cells may also be used for transpprt studies, it is often difficult to separate transport from subsequent events in intracellular intermediary metabolism. One of the important advantages offered by membrane vesicles is the opportunity to investigate their transport functions apart from other cellular activities. At the same time, the isolated transport systems of membrane vesicles are retained in a functional form and their relationship to other membrane components can also be studied.

Keywords

Membrane Vesicle Nucleoside Transport Baby Hamster Kidney Plasma Membrane Vesicle Baby Hamster Kidney Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, D., and Crumpton, M. J., 1970, Preparation and characterization of the plasma membrane of pig lymphocytes, Biochem. J. 120:133.PubMedGoogle Scholar
  2. Altendorf, K. H., and Staehelin, L. A., 1974, Orientation of membrane vesicles from Escherichia coli as detected by freeze-cleave electron microscopy, J. Bacteriol. 117:888.PubMedGoogle Scholar
  3. Avruch, J., and Wallach, D. F. H., 1971, Preparation and properties of plasma membrane and endoplasmic reticulum fragments from isolated rat fat cells, Biochim. Biophys. Acta 233:334.PubMedCrossRefGoogle Scholar
  4. Barnes, E. M., Jr., 1972, Respiration-coupled glucose transport in membrane vesicles from Azotobacter vinelandii, Arch. Biochem. 152:795.PubMedCrossRefGoogle Scholar
  5. Barnes, E. M., Jr., 1973, Multiple sites for coupling of glucose transport to the respiratory chain of membrane vesicles from Azotobacter vinelandii, J. Biol. Chem. 248:8120.PubMedGoogle Scholar
  6. Barnes, E., Jr., 1974, Respiration-coupled calcium transport by membrane vesicles from Azotobacter vinelandii, Fed. Proc. 33:1457.Google Scholar
  7. Barnes, E. M., Jr., and Kaback, H. R., 1970, β-Galactoside transport in bacterial membrane preparations: Energy coupling via membrane-bound d-lactic dehydrogenase, Proc. Natl. Acad. Sci. (USA) 66:1190.CrossRefGoogle Scholar
  8. Benke, P. J., Herrick, N., and Hebert, A., 1973, Transport of hypoxanthine in fibroblasts with normal and mutant hypoxanthine-guanine phosphoribosyltransferase, Biochem. Med. 8:309.PubMedCrossRefGoogle Scholar
  9. Berger, E. A., 1973, Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli, Proc. Natl. Acad. Sci. (USA) 70:1514.CrossRefGoogle Scholar
  10. Bhattacharyya, P., 1970, Active transport of manganese in isolated membranes of Escherichia coli, J. Bacteriol. 104:1307.PubMedGoogle Scholar
  11. Bhattacharyya, P., Epstein, W., and Silver, S., 1971, Valinomycin-induced uptake of potassium in membrane vesicles from Escherichia coli, Proc. Natl. Acad. Sci. (USA) 68:1488.CrossRefGoogle Scholar
  12. Brunette, D. M., and Till, J. E., 1971, A rapid method for the isolation of l-cell surface membrane using an aqueous two-phase polymer system, J. Membr. Biol. 5:215.CrossRefGoogle Scholar
  13. Carter, J. E., and Martin, D. B., 1969, Glucose uptake by isolated particles from rat epididymal adipose tissue cells, Proc. Natl. Acad. Sci. (USA) 64:1343.CrossRefGoogle Scholar
  14. Carter, J. E., Avruch, J., and Martin, D. B., 1972, Glucose transport in plasma membrane vesicles from rat adipose tissue, J. Biol. Chem. 246:2682.Google Scholar
  15. Cunningham, D. D., and Pardee, A. B., 1969, Transport changes rapidly initiated by serum addition to “contact-inhibited” 3T3 cells, Proc. Natl. Acad. Sci. (USA) 64:1049.CrossRefGoogle Scholar
  16. DePierre, J. W., and Karnovsky, M. L., 1973, Plasma membranes of mammalian cells: A review of methods for their characterization and isolation, J. Cell Biol. 56:257.CrossRefGoogle Scholar
  17. Frerman, F. E., and Bennett, W., 1973, Studies on the uptake of fatty acids by Escherichia coli, Arch. Biochem. Biophys. 159:434.PubMedCrossRefGoogle Scholar
  18. Futai, M., 1974a, Reconstitution of transport dependent on d-lactate or glycerol-3-phosphate in membrane vesicles of Escherichia coli deficient in the corresponding dehydrogenases, Biochemistry 13:2327.PubMedCrossRefGoogle Scholar
  19. Futai, M., 1974b, Orientation of membrane vesicles from Escherichia coli prepared by different procedures, J. Membr. Biol. 15:15.PubMedCrossRefGoogle Scholar
  20. Gahmberg, C. G., and Simons, K., 1970, Isolation of plasma membrane fragments from BHK 21 cells, Acta Pathol. Microbiol. Scand. Sect. B 78:176.Google Scholar
  21. Graham, J., 1972, Isolation and characterization of membranes from normal and transformed tissue culture cells, Biochem. J. 130:1113.PubMedGoogle Scholar
  22. Graham, J. M., Sumner, M. C. B., Curtis, D. H., and Pasternek, C. A., 1973, Sequence of events in plasma membrane assembly during the cell cycle, Nature 246:291.PubMedCrossRefGoogle Scholar
  23. Gruenstein, E., Rich, A., and Weihing, R. R., 1974, Actin associated with membranes from 3T3 mouse fibroblasts and HeLa cells, J. Cell Biol. 64:223.CrossRefGoogle Scholar
  24. Hampton, M. L., and Freese, E., 1974, Explanation for the apparent inefficiency of reduced nicotinamide adenine dinucleotide in energizing amino acid transport in membrane vesicles, J. Bacteriol. 118:497.PubMedGoogle Scholar
  25. Harold, F. M., 1972, Conservation and trasformation of energy of bacterial membranes, Bacteriol. Rev. 36:172.PubMedGoogle Scholar
  26. Heppel, L. A., 1971, The concept of periplasmic enzymes, in: Structure and Function of Biological Membranes (L. Rothfield, ed.), p. 223, Academic Press, New York.Google Scholar
  27. Hinds, T. R., and Brodie, A. F., 1974, Relationship of a proton gradient to the active transport of proline with membrane vesicles from Mycobacterium phlei, Proc. Natl. Acad. Sci. (USA) 71:1202.CrossRefGoogle Scholar
  28. Hirata, H., Asano, A., and Brodie, A. F., 1971, Respiration dependent transport of proline by electron transport particles from Mycobacterium phlei, Biochem. Biophys. Res. Commun. 44:368.PubMedCrossRefGoogle Scholar
  29. Hirata, H., Altendorf, K., and Harold, F. M., 1974, Energy coupling in membrane vesicles of Escherichia coli. I. Accumulation of metabolites in response to an electrical potential, J. Biol. Chem. 249:2939.PubMedGoogle Scholar
  30. Hochstadt, J., 1974, The role of the membrane in the utilization of nucleic acid precursors, CRC Crit. Rev. Biochem. 2:259.PubMedCrossRefGoogle Scholar
  31. Hochstadt-Ozer, J., 1972, The regulation of purine utilization in bacteria. IV. Roles of membrane-localized and pericytoplasmic enzymes in the mechanism of purine nucleoside transport across isolated E. coli membranes, J. Biol. Chem. 247:2419.PubMedGoogle Scholar
  32. Hochstadt-Ozer, J., and Cashel, M., 1972, The regulation of purine utilization in bacteria. V. Inhibition of purine phosphoribosyltransferase activity and purine uptake in isolated membrane vesicles by guanosine tetraphosphate, J. Biol. Chem. 247:7067.PubMedGoogle Scholar
  33. Hochstadt-Ozer, J., and Stadtman, E. R., 1971a, The regulation of purine utilization in bacteria. I. Purification of adenine phosphoribosyltransferase and control of activity by nucleotides, J. Biol. Chem. 246:5294.PubMedGoogle Scholar
  34. Hochstadt-Ozer, J., and Stadtman, E. R., 1971b, The regulation of purine utilization in bacteria. II. Adenine phosphoribosyltransferase in isolated membrane preparations and its role in transport of adenine across the membrane, J. Biol. Chem. 246:5304.PubMedGoogle Scholar
  35. Hochstadt-Ozer, J., and Stadtman, E. R., 1971c, The regulation of purine utilization in bacteria. III. The involvement of purine phosphoribosyltransferase in the uptake of adenine and other nucleic acid precursors by intact resting cells, J. Biol. Chem. 246:5312.PubMedGoogle Scholar
  36. Holley, R. W., 1972, A unifying hypothesis concerning the nature of malignant growth, Proc. Natl. Acad. Sci. (USA) 69:2840.CrossRefGoogle Scholar
  37. Kaback, H. R., 1968, The role of the phosphoenolpyruvate phosphotransferase system in the transport of sugars by isolated membrane preparations of Escherichia coli, J. Biol. Chem. 243:3711.PubMedGoogle Scholar
  38. Kaback, H. R., 1970, Transport, Ann. Rev. Biochem. 39:561.PubMedCrossRefGoogle Scholar
  39. Kaback, H. R., 1971, Bacterial membranes, in: Methods in Enzymology, Vol. 22 (W. B. Jacoby, ed.), p. 99, Academic Press, New York.Google Scholar
  40. Kaback, H. R., 1972, Transport across isolated bacterial cytoplasmic membranes, Biochim. Biophys. Acta 265:367.PubMedCrossRefGoogle Scholar
  41. Kaback, H. R., and Hong, J., 1973, Membranes and transport, CRC Crit. Rev. Microbiol. 2:333.CrossRefGoogle Scholar
  42. Kaback, H. R., and Milner, L. S., 1970, Relationship of a membrane-bound d-lactic dehydrogenase to amino acid transport in isolated bacterial membrane preparations, Proc. Natl. Acad. Sci. (USA) 66:1008.CrossRefGoogle Scholar
  43. Kaback, H. R., and Stadtman, E. R., 1966, Proline uptake by an isolated cytoplasmic membrane preparation of Escherichia coli, Proc. Natl. Acad. Sci. (USA) 55:920.CrossRefGoogle Scholar
  44. Kaback, H. R., and Stadtman, E. R., 1968, Glycine uptake in Escherichia coli. II. Glycine uptake, exchange, and metabolism by an isolated membrane preparation, J. Biol. Chem. 243:1390.PubMedGoogle Scholar
  45. Kamat, V. B., and Wallach, D. F. H., 1965, Separation and partial purification of plasma-membrane fragments from Ehrlich ascites carcinoma microsomes, Science 148:1343.PubMedCrossRefGoogle Scholar
  46. Kashket, E. R., and Wilson, T. H., 1973, Proton-coupled accumulation of galactoside in Streptococcus lactis 7962, Proc. Natl. Acad. Sci. (USA) 70:2866.CrossRefGoogle Scholar
  47. Kerwar, G., Gordon, A. S., and Kaback, H. R., 1972, Mechanisms of active transport in isolated membrane vesicles. IV. Galactose transport by isolated membrane vesicles from Escherichia coli, J. Biol. Chem. 247:291.PubMedGoogle Scholar
  48. King, T. E., 1967, Preparations of succinate-cytochrome c reductase and the cytochrome b-c particle, and reconstitution of succinate-cytochrome c reductase, in: Methods in Enzymology, Vol. 10 (R. W. Estabrook and M. E. Pullman, eds.), p. 216, Academic Press, New York.Google Scholar
  49. Klein, W. L., and Boyer, P. D., 1972, Energization of active transport by Escherichia coli, J. Biol. Chem. 247:7257.PubMedGoogle Scholar
  50. Komatsu, Y., and Tanaka, K., 1973, Deoxycytidine uptake by isolated membrane vesicles from Escherichia coli K12, Biochim. Biophys. Acta 311:496.PubMedCrossRefGoogle Scholar
  51. Konings, W., and Freese, E., 1972, Amino acid transport in membrane vesicles of Bacillus subtilis, J. Biol. Chern. 247:2408.Google Scholar
  52. Konings, W., and Kaback, H. R., 1973, Anaerobic transport in Escherichia coli membrane vesicles, Proc. Natl. Acad. Sci. (USA) 70:3376.CrossRefGoogle Scholar
  53. Konings, W. N., Barnes, E. M., Jr., and Kaback, H. R., 1971, Mechanisms of active transport in isolated membrane vesicles. III. The coupling of reduced phenazine methosulfate to the concentrative uptake of β-galactosides and amino acids, J. Biol. Chem. 246:5857.PubMedGoogle Scholar
  54. Konings, W. N., Bisschop, A., Veenhuis, M., and Vermeulen, C. A., 1973, New procedure for the isolation of membrane vesicles of Bacillus subtilis and an electron microscopy study of their ultrastructure, J. Bacteriol. 116:1456.PubMedGoogle Scholar
  55. Lauter, C. J., Solyom, A., and Trams, E. G., 1972, Comparative studies on enzyme markers of liver plasma membranes, Biochim. Biophys. Acta 266:511.PubMedCrossRefGoogle Scholar
  56. Leder, I., 1972, Interrelated effects of cold shock and osmotic pressure on the permeability of the E. coli membrane to permease accumulated substrates, J. Bacteriol. 111:211.PubMedGoogle Scholar
  57. Lesko, L., Donlon, M., Marinetti, G. V., and Hare, J. D., 1973, A rapid method for the isolation of rat liver plasma membranes using an aqueous two-phase polymer system, Biochim. Biophys. Acta 311:173.PubMedCrossRefGoogle Scholar
  58. Li, C. C., and Hochstadt, J., 1975, Nucleoside uptake by plasma membrane vesicles from L929 cells grown in completely defined medium, submitted for publication.Google Scholar
  59. Littlefield, J. W., 1964, Three degrees of guanylic acid-inosinic acid pyrophosphorylase deficiency in mouse fibroblasts, Nature 203:1142.PubMedCrossRefGoogle Scholar
  60. Lombardi, F. J., and Kaback, H. R., 1972, Mechanisms of active transport in isolated bacterial membrane vesicles. VIII. The transport of amino acids by membranes prepared from Escherichia coli, J. Biol. Chem. 247:7844.PubMedGoogle Scholar
  61. Lombardi, F. J., Reeves, J. P., and Kaback, H. R., 1973, Mechanisms of active transport in isolated bacterial membrane vesicles. XIII. Valinomycin-induced rubidium transport, J. Biol. Chem. 248:3551.PubMedGoogle Scholar
  62. Lowry, O. H., Roseborough, N. J., Farr, A. J., and Randell, R. J., 1951, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193:265.PubMedGoogle Scholar
  63. MacLeod, R. A., Thurman, P., and Rogers, H. J., 1973, Comparative transport activity of intact cells, membrane vesicles, and mesosomes of Bacillus licheniformis, J. Bacteriol 113:329.PubMedGoogle Scholar
  64. McBride, O. W., and Ozer, H. L., 1973, Transfer of genetic information by purified metaphase chromosomes, Proc. Natl. Acad. Sci. (USA) 70:1258.CrossRefGoogle Scholar
  65. McKeel, D. W., and Jarrett, L., 1970, Preparation and characterization of a plasma membrane fraction from isolated fat cells, J. Cell Biol. 44:417.PubMedCrossRefGoogle Scholar
  66. Meezan, E., Wu, H., Black, P. A., and Robbins, P. W., 1969, Comparative studies on the carbohydrate-containing membrane components of normal and virus-transformed mouse fibroblasts. II. Separation of glycoproteins and glycopeptides by Sephadex chromatography, Biochemistry 8:2518.PubMedCrossRefGoogle Scholar
  67. Murray, A. W., Elliott, D. C., and Atkinson, M. R., 1970, Nucleotide biosynthesis from preformed purines in mammalian cells: Regulatory mechanisms and biological significance, in: Progress in Nucleic Acid Research and Molecular Biology, Vol. 10 (J. N. Davidson and W. E. Cohn, eds.), p. 87, Academic Press, New York.Google Scholar
  68. Neville, D. M., 1960, The isolation of a cell membrane fraction from rat liver, J. Biophys. Biochem. Cytol. 8:413.PubMedCrossRefGoogle Scholar
  69. Neville, D. M., 1975, Isolation of cell surface membrane fractions from mammalian cells and organs, in: Methods in Membrane Biology, Vol. 3 (E. D. Korn, ed.), p. 1, Plenum Press, New York.CrossRefGoogle Scholar
  70. Noonan, K., Levine, A., and Burger, N., 1973, Cell cycle-dependent changes in the surface membrane as detected with 3H-concanavalin A, J. Cell Biol. 58:491.PubMedCrossRefGoogle Scholar
  71. Osborn, M. J., Gander, J. E., Parisi, E., and Carson, J., 1972, Mechanism of assembly of the outer membrane of Salmonella typhimurium: Isolation and characterization of cytoplasmic and outer membrane, J. Biol. Chem. 247:3962.PubMedGoogle Scholar
  72. Ozer, J. (Hochstadt), and Wallach, D. F. H., 1967, H-2 components and cellular membranes: Distinctions between plasma membrane and endoplasmic reticulum governed by the H-2 region in the mouse, Transplantation 5:652.PubMedCrossRefGoogle Scholar
  73. Perdue, J. F., 1971, The isolation and characterization of plasma membranes from cultured cells. III. The adenosine triphosphate-dependent accumulation of Ca2+ by chick embryo fibroblasts, J. Biol. Chem. 246:6750.Google Scholar
  74. Pickard, M. A., Phillippe, L., and Campbell, J. N., 1974, Metabolism and transport of purine nucleosides by membrane preparations of Micrococcus sodonensis, Can. J. Biochem. 52:83.PubMedCrossRefGoogle Scholar
  75. Plagemann, P. G. W., and Erbe, J., 1972, Thymidine transport by cultured Novikoff hepatoma cells and uptake by simple diffusion and relationship to incorporation in deoxyribonucleic acid, J. Cell Biol. 55:161.PubMedCrossRefGoogle Scholar
  76. Plagemann, P. G. W., and Erbe, J., 1973, Nucleotide pools in Novikoff rat hepatoma cells growing in suspension culture. IV. Nucleoside transport in cells depleted of nucleotides by treatment with KCN, J. Cell Physiol. 81:101.PubMedCrossRefGoogle Scholar
  77. Post, R. L., and Jolly, P. C., 1957, The linkage of Na+, K+ and NH+ 4 active transport across the human erythrocyte membrane, Biochim. Biophys. Acta 25:118.PubMedCrossRefGoogle Scholar
  78. Prezioso, G., Hong, J., Kerwar, G. N., and Kaback, H. R., 1973, Mechanisms of active transport in isolated bacterial membrane vesicles. XII. Active transport by a mutant of Escherichia coli uncoupled for oxidative phosphorylation, Arch. Biochem. Biophys. 154:575.PubMedCrossRefGoogle Scholar
  79. Quinlan, D. C., and Hochstadt, J., 1974, An altered rate of uridine transport in membrane vesicles isolated from growing and quiescent 3T3 cells, Proc. Natl. Acad. Sci. (USA) 71:5000.CrossRefGoogle Scholar
  80. Quinlan, D. C., and Hochstadt, J., 1975a, Mechanisms of transport by isolate membranes from culture mammalian cells: Group translocation of the ribose moiety of inosine by plasma membrane vesicles from 3T3 cells transformed with Simian virus 40, J. Biol. Chem., in press.Google Scholar
  81. Quinlan, D. C., and Hochstadt, J., 1975b, The existence of a group translocation mechanism in animal cells: Uptake of the ribose moiety of inosine, J. Supramolecular Structure, in press.Google Scholar
  82. Raue, H. A., and Cashel, M., 1973, Regulation of RNA synthesis in E. coli. I. Characterization of cells subjected to simultaneous temperature and osmotic shock, Biochim. Biophys. Acta 312:722.PubMedCrossRefGoogle Scholar
  83. Ray, T. K., 1970, A modified method for the isolation of the plasma membrane from rat liver, Biochim. Biophys. Acta 196:1.PubMedCrossRefGoogle Scholar
  84. Reeves, J. P., 1971, Transient pH changes during d-lactate oxidation by membrane vesicles, Biochem. Biophys. Res. Commun. 45:931.PubMedCrossRefGoogle Scholar
  85. Reeves, J. P., Hong, J., and Kaback, H. R., 1973, Reconstitution of d-lactate dependent transport in membrane vesicles from a d-lactate dehydrogenase mutant of Escherichia coli, Proc. Natl. Acad. Sci. (USA) 70:1917.CrossRefGoogle Scholar
  86. Romano, A. H., and Colby, C., 1973, SV40 virus transformation of mouse 3T3 cells does not specifically enhance sugar transport, Science 179:1238.PubMedCrossRefGoogle Scholar
  87. Roseman, S., 1969, The transport of carbohydrates by a bacterial phosphotransferase system, J. Gen. Physiol. 54:1385.CrossRefGoogle Scholar
  88. Rosen, B. P., 1973, Restoration of active transport in a Mg2+-adenosine triphosphatase-deficient mutant of Escherichia coli, J. Bacteriol. 116:1124.PubMedGoogle Scholar
  89. Schuster, G. S., and Hare, J. D., 1971, The role of phosphorylation in the uptake of thymidine in mammalian cells, In Vitro 6:427.PubMedCrossRefGoogle Scholar
  90. Shapiro, B. M., Sicardi, A. G., Hirota, Y., and Jacob, F., 1970, On the process of cellular division in Escherichia coli. II. Membrane protein alterations associated with mutations affecting the initiation of DNA synthesis, J. Mol. Biol. 52:75.PubMedCrossRefGoogle Scholar
  91. Short, S. A., White, D. C., and Kaback, H. R., 1972a, Mechanisms of active transport in isolated bacterial membrane vesicles. IX. The kinetics and specificity of amino acid transport in Staphylococcus aureus membrane vesicles, J. Biol. Chem. 247:7452.PubMedGoogle Scholar
  92. Short, S. A., White, D. C., and Kaback, H. R., 1972b, Active transport in isolated bacterial membrane vesicles. V. The transport of amino acids by membrane vesicles prepared from Staphylococcus aureus, J. Biol. Chem. 247:298.PubMedGoogle Scholar
  93. Short, S. A., Kaback, H. R., and Kohn, L. S., 1974, d-Lactate dehydrogenase binding in Escherichia coli dld-membrane vesicles reconstituted for active transport, Proc. Natl. Acad. Sci. (USA) 71:1461.CrossRefGoogle Scholar
  94. Simoni, R. D., and Shallenberger, M. K., 1972, Coupling of energy to active transport of amino acids in Escherichia coli, Proc. Natl. Acad. Sci. (USA) 69:2663.CrossRefGoogle Scholar
  95. Soderman, D. D., Germershausen, J., and Katzen, H. M., 1973, Affinity binding of intact fat cells and their ghosts to immobilized insulin, Proc. Natl. Acad. Sci. (USA) 70:792.CrossRefGoogle Scholar
  96. Sprott, G. D., and MacLeod, R. A., 1972, Na+-dependent amino acid transport in isolated membrane vesicles of a marine pseudomonad energized by electron donors, Biochem. Biophys. Res. Commun. 47:838.PubMedCrossRefGoogle Scholar
  97. Sprott, G. D., and MacLeod, R. A., 1974, Nature of the specificity of alcohol coupling to l-alanine transport into isolated membrane vesicles of a marine pseudomonad, J. Bacteriol. 117:1043.PubMedGoogle Scholar
  98. Steck, T. L., and Wallach, D. F. H., 1970, The isolation of plasma membranes, in: Methods in Cancer Research, Vol. 5 (H. Busch, ed.), p. 93, Academic Press, New York.Google Scholar
  99. Taube, R. A., and Berlin, R., 1972, Membrane transport of nucleosides in rabbit poly-morphonuclear leukocytes, Biochim. Biophys. Acta 255:6.PubMedCrossRefGoogle Scholar
  100. Van Thienen, G., and Postma, P. W., 1973, Coupling between energy conservation and active transport of serine in Escherichia coli, Biochim. Biophys. Acta 323:429.PubMedCrossRefGoogle Scholar
  101. Venuta, S., and Rubin, H., 1973, Sugar transport in normal and rous sarcoma virus-transformed chick-embryo fibroblasts, Proc. Natl. Acad. Sci. (USA) 70:653.CrossRefGoogle Scholar
  102. Wallach, D. F. H., 1967, Isolation of plasma membranes of animal cells, in: The Specificity of Cell Surfaces (B. D. Davis and L. Warren, eds.), p. 129, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  103. Wallach, D. F. H., and Kamat, V. B., 1966a, The contribution of sialic acid to the surface charge of fragments of plasma membrane and endoplasmic reticulum, J. Cell Biol. 30:660.PubMedCrossRefGoogle Scholar
  104. Wallach, D. F. H., and Kamat, V. B., 1966b, Preparation of plasma membrane fragments from mouse ascites tumor cells, in: Methods in Enzymology, Vol. 8 (V. Ginsburg and E. Neufeld, eds.), p. 164, Academic Press, New York.Google Scholar
  105. Wallach, D. F. H., and Lin, P. S., 1973, A critical evaluation of plasma membrane fractionation, Biochim. Biophys. Acta 300:211.PubMedCrossRefGoogle Scholar
  106. Wallach, D. F. H., and Zahler, P. H., 1966, Protein conformations in cellular membrane, Proc. Natl. Acad. Sci. (USA) 56:1552.CrossRefGoogle Scholar
  107. Wallach, D. F. H., Kamat, V. B., and Gail, M. H., 1966, Physicochemical differences between fragments of plasma membrane and endoplasmic reticulum, J. Cell Biol. 30:601.PubMedCrossRefGoogle Scholar
  108. Warren, L., Glick, M. C., and Nass, M. K., 1966, Membranes of animal cells. I. Methods of isolation of the surface membrane, J. Cell. Physiol. 68:269.CrossRefGoogle Scholar
  109. Weaver, R. A., and Boyle, W., 1969, Purification of plasma-membranes of rat liver: Application of zonal centrifugation isolation of cell membranes, Biochim. Biophys. Acta 173:377.PubMedCrossRefGoogle Scholar
  110. Weiner, J. H., 1974, The localization of glycerol-3-phosphate dehydrogenase in Escherichia coli, J. Membr. Biol. 15:1.PubMedCrossRefGoogle Scholar
  111. Weissbach, H., Redfield, B., and Kaback, H. R., 1969, Nucleotide binding by Escherichia coli membranes and solubilized membrane proteins, Arch. Biochem. Biophys. 135:66.PubMedCrossRefGoogle Scholar
  112. Wheeler, K. P., and Christensen, H. N., 1967, Role of Na+ in the transport of amino acids in rabbit red cells, J. Biol. Chem. 242:1450.PubMedGoogle Scholar
  113. Wu, H., Meezan, E., Black, P. A., and Robbins, P. W., 1969, Comparative studies on the carbohydrate-containing membrane components of normal and virus-transformed mouse fibroblasts. I. Glucosamine labeling patterns in 3T3, spontaneously transformed 3T3, and SV40-transformed 3T3 cells, Biochemistry 8:2509.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Joy Hochstadt
    • 1
  • Dennis C. Quinlan
    • 1
  • Richard L. Rader
    • 1
  • Chien-Chung Li
    • 1
  • Diana Dowd
    • 1
  1. 1.Worcester Foundation for Experimental BiologyShrewsburyUSA

Personalised recommendations