Transport pp 51-115 | Cite as

Preparation and Characterization of Isolated Intestinal Epithelial Cells and Their Use in Studying Intestinal Transport

  • George A. Kimmich


Progress in our understanding of the nature of biological transport systems characteristic of intestinal tissue has been closely paralleled by the development of methods which allow various aspects of transport to be evaluated. Indeed, the rate of growth in our understanding of intestinal transport is to a high degree determined by the rate of development of innovative techniques coupled with ever-growing bodies of knowledge in biochemistry, physiology, and related biological disciplines. Any historical overview of a basic science will reflect the quantum leaps in understanding which are in part produced by innovations in methodology and are in part the driving force for further innovation. Necessity may be the mother of invention, but invention is both the mother and daughter of basic research.


Intestinal Epithelial Cell Brush Border Intestinal Tissue Intact Tissue Glycolytic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, W. O., and Miller, T. G., 1936, Intubation studies of the human small intestine. III. A technique for the collection of pure intestinal secretion and for study of intestinal absorption, Am. Med. Assoc. 106:16.CrossRefGoogle Scholar
  2. Agar, W. T., Hird, F. J. R., and Sidhu, G. S., 1954, The uptake of amino acids by the intestine, Biochim. Biophys. Acta 14:80.PubMedCrossRefGoogle Scholar
  3. Agar, W. T., Hird, F. J. R., and Sidhu, G. S., 1956, The absorption, transfer, and uptake of amino acids by intestinal tissue, Biochim. Biophys. Acta 22:21.PubMedCrossRefGoogle Scholar
  4. Alvarado, F., 1966, Transport of sugars and amino acids in the intestine: Evidence for a common carrier, Science 151:1010.PubMedCrossRefGoogle Scholar
  5. Alvarado, F., 1968, Amino acid transport in hamster small intestine: Site of inhibition by d-galactose, Nature 219:276.PubMedCrossRefGoogle Scholar
  6. Alvarado, F., and Crane, R. K., 1962, Phlorizin as a competitive inhibitor of the active transport of sugars by hamster small intestine, in vitro, Biochim. Biophys. Acta 56:170.PubMedCrossRefGoogle Scholar
  7. Armstrong, W. McD., Musselman, D. L., and Reitzug, H. C., 1970, Sodium, potassium, and water content of isolated bullfrog small intestinal epithelia, Am. J. Physiol. 219:1023.PubMedGoogle Scholar
  8. Barrett, E. G., 1974, Ultrastructural and transport properties of isolated intestinal epithelial cells, Ph.D. Thesis, University of Rochester.Google Scholar
  9. Barrett, E. G., and Coleman, J. R., 1973, Sodium and potassium content of single cells: Effects of metabolic and structural changes, in: Proceedings of the 8th National Conference on Electron Probe Analysis, New Orleans, p. 60.Google Scholar
  10. Bergstrom, S., Blomstrand, R., and Borgstrom, B., 1954, Route of absorption and distribution of oleic acid and triolein in the rat, Biochem. J. 58:600.PubMedGoogle Scholar
  11. Biggs, M. W., Friedman, M., and Byers, S. O., 1951, Intestinal lymphatic transport of absorbed cholesterol, Proc. Soc. Exp. Biol. Med. 78:641.PubMedGoogle Scholar
  12. Bihler, I., and Crane, R. K., 1962, Studies on the mechanism of intestinal absorption of sugars: The influence of several cations and anions on the active transport of sugars, in vitro, by various preparations of hamster small intestine, Biochim. Biophys. Acta 59:78.PubMedCrossRefGoogle Scholar
  13. Blomstrand, R., Borgstrom, B., and Dahlback, O., 1959, Extent of total hydrolysis of dietary glycerides during digestion and absorption in the human, Proc. Soc. Exp. Biol. Med. 102:204.PubMedGoogle Scholar
  14. Bloom, B., Chaikoff, I. L., Reinhardt, W. O., Entenman, C., and Dauben, W. G., 1950, The quantitative significance of the lymphatic pathway in transport of absorbed fatty acids, J. Biol. Chem. 184:1.PubMedGoogle Scholar
  15. Bollman, J. L., Cain, J. C., and Grindlay, J. H., 1948, Techniques for the collection of lymph from the liver, small intestine, or thoracic duct of the rat, J. Lab. Clin. Med. 33:1349.PubMedGoogle Scholar
  16. Caspary, W. F., Stevenson, N. R., and Crane, R. K., 1969, Evidence for an intermediate step in carrier-mediated sugar translocation across the brush border membrane of hamster small intestine, Biochim. Biophys. Acta 193:168.PubMedCrossRefGoogle Scholar
  17. Chaikoff, I. L., Bloom, B., Siperstein, M. L., Kiyasu, J. Y., Reinhardt, W. O., Dauben, W. G., and Eastham, J. F., 1952, C14-Cholesterol. I. Lymphatic transport of absorbed cholesterol-4-C14, J. Biol. Chem. 194:407.PubMedGoogle Scholar
  18. Chapman, A. G., Fall, L., and Atkinson, D. E., 1971, Adenylate energy charge in Escherichia coli during growth and starvation, J. Bacteriol. 108:1072.PubMedGoogle Scholar
  19. Chez, R. A., Schultz, S. G., and Curran, P. F., 1966, Effect of sugars on transport of alanine in intestine, Science 53:1012.CrossRefGoogle Scholar
  20. Clark, B., and Porteus, J. W., 1965, The isolation and properties of epithelial cell “ghosts” from rat small intestine, Biochem. J. 96:539.PubMedGoogle Scholar
  21. Cori, C. F., 1925, The fate of sugar in the animal body. I. The rate of absorption of hexoses and pentose from the intestinal tract, J. Biol. Chem. 66:691.Google Scholar
  22. Crane, R. K., and Mandelstam, P., 1960, The active transport of sugars by various preparations of hamster intestine, Biochim. Biophys. Acta 45:460.PubMedCrossRefGoogle Scholar
  23. Crane, R. K., Miller, D., and Bihler, I., 1960, The restrictions on possible mechanisms of intestinal active transport of sugars, in: Symposium on Membrane Transport and Metabolism (A. Kotẏk and A. Kleinzeller, eds.), pp. 439–449, Academic Press, New York.Google Scholar
  24. Crane, R. K., Forstner, G., and Eicholz, A., 1965, Studies on the mechanism of the intestinal absorption of sugars. X. An effect of Na+ concentration on the apparent Michaelis constants for intestinal sugar transport in vitro, Biochim. Biophys. Acta 109:467.PubMedCrossRefGoogle Scholar
  25. Cummins, A. J., and Jussila, R., 1955, Comparison of glucose absorption rates in the upper and lower human small intestine, Gastroenterology 29:982.PubMedGoogle Scholar
  26. Curran, P. F., Schultz, S. G., Chez, R. A., and Fuisz, R. E., 1967, Kinetic relations of the Na+-amino acid interaction at the mucosal border of intestine, J. Gen. Physiol. 50:1261.PubMedCrossRefGoogle Scholar
  27. Darlington, W. A., and Quastel, J. H., 1953, Absorption of sugars from isolated surviving intestine, Arch. Biochem. 43:194.PubMedCrossRefGoogle Scholar
  28. Dent, C. E., and Schilling, J. A., 1949, Studies on the absorption of protein: The amino acid pattern in the portal blood, Biochem. J. 44:318.Google Scholar
  29. Dickens, F., and Weil-Malherbe, H., 1941, Metabolism of normal and tumor tissue. 19. The metabolism of intestinal mucus membrane, Biochem. J. 35:7.PubMedGoogle Scholar
  30. Fisher, R. B., and Parsons, D. S., 1949, A preparation of surviving rat small intestine for the study of absorption, J. Physiol. (London) 110:36.Google Scholar
  31. Fisher, R. B., and Parsons, D. S., 1953a, Glucose movements across the wall of the rat small intestine, J. Physiol. (London) 119:210.Google Scholar
  32. Fisher, R. B., and Parsons, D. S., 1953b, Galactose absorption from the surviving small intestine of the rat, J. Physiol. (London) 119:224.Google Scholar
  33. Fullerton, P. M., and Parsons, D. S., 1956, The absorption of sugars and water from rat intestine in vivo, Quart. J. Exp. Physiol. 41:387.Google Scholar
  34. Goldner, A. M., Schultz, S. G., and Curran, P. F., 1969, Sodium and sugar fluxes across the mucosal border of rabbit ileum, J. Gen. Physiol. 53:362.PubMedCrossRefGoogle Scholar
  35. Goldner, A. M., Hajjar, J. J., and Curran, P. F., 1972, Effects of inhibitors on 3-O-methylglucose transport in rabbit ileum, J. Membr. Biol. 10:267.PubMedCrossRefGoogle Scholar
  36. Gornall, A. G., Bardawill, C. S., and David, M. M., 1949, Determination of serum protein by means of the biuret reaction, J. Biol. Chem. 177:751.PubMedGoogle Scholar
  37. Harrer, D. S., Stern, B. K., and Reilly, R. W., 1964, Removal and dissociation of epithelial cells from the rodent gastrointestinal tract, Nature 203:319.PubMedCrossRefGoogle Scholar
  38. Harrison, D. D., and Webster, H. L., 1969, The preparation of isolated intestinal crypt cells, Exp. Cell Res. 55:257.PubMedCrossRefGoogle Scholar
  39. Huang, K. C., 1965, Uptake of l-tyrosine and 3-O-methylglucose by isolated intestinal epithelial cells, Life Sci. 4:1201.PubMedCrossRefGoogle Scholar
  40. Iemhoff, W. G. J., Van Den Berg, J. W. O., De Pyper, A. M., and Hulsmann, W. C., 1970, Metabolic aspects of isolated cells from rat small intestinal epithelium, Biochim. Biophys. Acta 215:229.PubMedCrossRefGoogle Scholar
  41. Jacobs, F. A., and Luper, M., 1957, Intestinal absorption by perfusion in situ, J. Appl. Physiol. 11:136.PubMedGoogle Scholar
  42. Kimmich, G. A., 1970a, Preparation and properties of mucosal epithelial cells isolated from small intestine of the chicken, Biochemistry 9:3659.PubMedCrossRefGoogle Scholar
  43. Kimmich, G. A., 1970b, Active sugar accumulation by isolated intestinal epithelial cells: A new model for sodium dependent metabolite transport, Biochemistry 9:3669.PubMedCrossRefGoogle Scholar
  44. Kimmich, G. A., 1973, Coupling between Na+ and sugar transport in small intestine, Biochim. Biophys. Acta 300:31.PubMedCrossRefGoogle Scholar
  45. Kimmich, G. A., and Randles, J., 1973a, Effect of K+ and K+ gradients on accumulation of sugars by isolated intestinal epithelial cells, J. Membr. Biol. 12:23.PubMedCrossRefGoogle Scholar
  46. Kimmich, G. A., and Randles, J., 1973, Interaction between Na+-dependent transport systems for sugars and amino acids: Evidence against a role for the sodium gradient, J. Membr. Biol. 12:47.PubMedCrossRefGoogle Scholar
  47. Kinter, W. B., Wilson, T. H., and Mullen, D. A., 1965, Autoradiographic study of sugar and amino acid absorption by everted sacs of hamster intestine, J. Cell Biol. 25:19.PubMedCrossRefGoogle Scholar
  48. Kiyasu, J. Y., and Chaikoff, I. L., 1957, On the manner of transport of absorbed fructose, J. Biol. Chem. 224:935.PubMedGoogle Scholar
  49. Kiyasu, J. Y., Katz, J., and Chaikoff, I. L., 1956, Nature of the C14-compounds recovered in portal plasma after enteral administration of C14-glucose, Biochim. Biophys. Acta 21:286.PubMedCrossRefGoogle Scholar
  50. Lee, C. O., and Armstrong, W. Mc. D., 1972, Activities of sodium and potassium ions in epithelial cells of small intestine, Science 175:1261.PubMedCrossRefGoogle Scholar
  51. Levenson, S. M., Rosen, H., and Upjohn, H. Z., 1959, Nature and appearance of protein digestion in upper mesenteric blood, Proc. Soc. Exp. Biol. Med. 101:178.PubMedGoogle Scholar
  52. London, E. S., 1929, Experimental fistulae of blood vessels, Harvey Lect. 23:208.Google Scholar
  53. Lotspeich, W. D., and Keller, D. M., 1956, A study of some effects of phlorizin on the metabolism of kidney tissue in vitro, J. Biol. Chem. 222:843.PubMedGoogle Scholar
  54. Matthews, D. M., and Smyth, D. H., 1954, The intestinal absorption of amino acid enantiomorphs, J. Physiol. (London) 126:96.Google Scholar
  55. Miller, T. G., and Abbott, W. O., 1934, Intestinal intubation; a practical technique, Am. J. Med. Sci. 187:595.CrossRefGoogle Scholar
  56. Munck, B. G., and Schultz, S. G., 1969, Interaction between leucine and lysine transport in rabbit ileum, Biochim. Biophys. Acta 183:192.Google Scholar
  57. Newey, H., and Smyth, D. H., 1964, Effects of sugars on intestinal transfer of amino acids, Nature 202:400.PubMedCrossRefGoogle Scholar
  58. Newey, H., Parsons, B. J., and Smyth, D. H., 1959, The site of action of phlorizin in inhibiting intestinal absorption of glucose, J. Physiol. 148:83.PubMedGoogle Scholar
  59. Ohnell, R., 1939, The artificially perfused mammalian intestine as a useful preparation for studying intestinal absorption, J. Cell Comp. Physiol. 13:155.CrossRefGoogle Scholar
  60. Perris, A. D., 1965, Isolation of the epithelial cells of the rat small intestine, Can. J. Biochem. 44:687.Google Scholar
  61. Porteus, J. W., and Clark, B., 1965, The isolation and characterization of subcellular components of the epithelial cells of rabbit small intestine, Biochem. J. 96:159.Google Scholar
  62. Reid, E. W., 1901, Transport of fluid by certain epithelia, J. Physiol. (London) 26:436.Google Scholar
  63. Reiser, S., and Christiansen, P., 1971, The properties of the preferential uptake of l-leucine by isolated intestinal epithelial cells, Biochim. Biophys. Acta 225:123.PubMedCrossRefGoogle Scholar
  64. Schultz, S. G., and Curran, P. F., 1970, Coupled transport of sodium and organic solutes, Physiol. Rev. 50:637.PubMedGoogle Scholar
  65. Schultz, S. G., Fuisz, R. E., and Curran, P. F., 1966, Amino acid and sugar transport in rabbit ileum, J. Gen. Physiol. 49:849.PubMedCrossRefGoogle Scholar
  66. Schultz, S. G., Curran, P. F., Chez, R. A., and Fuisz, R. E., 1967, Alanine and sodium fluxes across mucosal border of rabbit ileum, J. Gen. Physiol. 50:1241.PubMedCrossRefGoogle Scholar
  67. Semenza, G., 1971, On the mechanism of mutual inhibition among sodium-dependent transport systems in the small intestine: A hypothesis, Biochim. Biophys. Acta 241:637.PubMedCrossRefGoogle Scholar
  68. Shay, H., Gershon-Cohen, J., Fels, S. S., and Munro, F. L., 1940, The fate of ingested glucose solution of various concentrations at different levels of the small intestine, Am. J. Digest. Dis. 7:456.CrossRefGoogle Scholar
  69. Sheff, M. F., and Smyth, D. H., 1955, An apparatus for the study of in vivo intestinal absorption in the rat, J. Physiol. (London) 128:67P.Google Scholar
  70. Shoemaker, W. C., Yanof, H. M., Turk, L. N., and Wilson, T. H., 1963, Glucose and fructose absorption in unanesthetized dogs, Gastroenterology 44:654.PubMedGoogle Scholar
  71. Sjostrand, F. S., 1968, A simple and rapid method to prepare dispersions of columnar epithelial cells from the rat intestine, J. Ultrastruct. Res. 22:424.PubMedCrossRefGoogle Scholar
  72. Sognen, E., 1967, A method for the preparation of suspensions of intestinal mucosal cells by means of calcium chelation, Acta Vet. Scand. 8:76.Google Scholar
  73. Sols, A., and Ponz, F., 1947, A new method for the study of intestinal absorption, Rev. Espan. Fisiol. 3:207.Google Scholar
  74. Stern, B. K., 1966, Some biochemical properties of suspensions of intestinal epithelial cells, Gastroenterology 51:855.PubMedGoogle Scholar
  75. Stern, B. K., and Jensen, W. E., 1966, Active transport of glucose by suspensions of isolated rat intestinal epithelial cells, Nature 209:789.PubMedCrossRefGoogle Scholar
  76. Stern, B. K., and Reilly, R. W., 1965, Some characteristics of the respiratory metabolism of suspensions of rat intestinal epithelial cells, Nature 205:563.CrossRefGoogle Scholar
  77. Stirling, C. E., 1967, High-resolution radioautography of phlorizin-3H in rings of hamster intestine, J. Cell Biol. 35:605.PubMedCrossRefGoogle Scholar
  78. Thiry, L., 1864, Über eine neue Methode, den Dunndarm zu isolieren, Sitzungsber. Akad. Wiss. Wien Math.-Naturwiss. Kl. Abt. I 50:77.Google Scholar
  79. Tucker, A. M., and Kimmich, G. A., 1973, Characteristics of amino acid accumulation by isolated intestinal epithelial cells, J. Membr. Biol. 12:1.PubMedCrossRefGoogle Scholar
  80. Van Slyke, D. D., and Meyer, G. M., 1912, The amino acid nitrogen of the blood: Preliminary experiments on protein assimilation, J. Biol. Chem. 12:399.Google Scholar
  81. Vella, L., 1888, Neues Verfahren zur Gewinnung reinen Darmsaftes und Feststellung seiner physiologischen Eigenschaften, Untersuch. Naturl. Menach Thiere 13:40.Google Scholar
  82. von Mering, J., 1877, Ueber die Abzugswege des Zuckers aus der Darmhohe, Arch. Anat. Physiol., 379.Google Scholar
  83. Webster, H. L., and Harrison, D. D., 1969, Enzymic activities during the transformation of crypt to columnar intestinal cells, Exp. Cell Res. 56:245.PubMedCrossRefGoogle Scholar
  84. Wiggans, D. S., and Johnstone, J. M., 1959, The absorption of peptides, Biochim. Biophys. Acta 32:69.PubMedCrossRefGoogle Scholar
  85. Wilson, T. H., and Vincent, T. N., 1955, Absorption of sugars in vitro by the intestine of the golden hamster, J. Biol. Chem. 216:851.PubMedGoogle Scholar
  86. Wilson, T. H., and Wiseman, G., 1954, The use of sacs of everted small intestine for the study of the transference of substances from the mucosal to the serosal surface, J. Physiol. (London) 123:116.Google Scholar
  87. Wiseman, G., 1953, Absorption of amino acids using an in vitro technique, J. Physiol. (London) 120:63.Google Scholar
  88. Wu, R., and Racker, E., 1959, Regulatory mechanisms in carbohydrate metabolism: Limiting factors in glycolysis of ascites tumor cells, J. Biol. Chem. 234:1029.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • George A. Kimmich
    • 1
  1. 1.Department of Radiation Biology and Biophysics, School of Medicine and DentistryUniversity of RochesterRochesterUSA

Personalised recommendations