Advertisement

Transport pp 1-49 | Cite as

Methods for Studying Transport in Bacteria

  • Peter C. Maloney
  • E. R. Kashket
  • T. H. Wilson

Abstract

The major objective of this chapter is to outline some of the important techniques which have been developed for the study of transport systems in bacteria. The techniques described are discussed in detail with respect to the study of the lactose transport system of Escherichia coli. It now appears that this transport system can serve as a useful model for a number of active transport systems in both bacterial and animal cells. In such transport systems, a protein (the “carrier”) embedded within the membrane mediates the translocation and accumulation of substrate; substrate appears within the cell without chemical modifications. The driving force for the accumulation of substrate is represented by the electrical and chemical forces acting on certain specific cations. In bacterial cells, accumulation by such transport systems is coupled to proton movements (see discussions by Mitchell, 1963, and Harold, 1972), whereas in animal cells such active transport is associated with the movement of sodium ions (for review, see Schultz and Curran, 1970). In the absence of energy coupling, however, these systems catalyze the facilitated diffusion of substrate across the cell membrane.

Keywords

Membrane Potential Transport System Fluorescence Change Cell Water Label Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addanki, S., Cahill, F. D., and Sotos, J. F., 1968, Determination of intramitochondrial pH and intramitochondrial-extramitochondrial pH gradient of isolated heart mitochondria by the use of 5,5-dimethyl-2,4-oxazolidinedione. 1. Changes during respiration and adenosine triphosphate-dependent transport of Ca++, Mg++ and Zn++, J. Biol. Chem. 243:2337.PubMedGoogle Scholar
  2. Ashgar, S. S., Levin, E., and Harold, F. M., 1973, Accumulation of neutral amino acids by Streptococcus faecalis: Energy coupling by a protonmotive force, J. Biol. Chem. 248:5225.Google Scholar
  3. Berger, E. A., 1973, Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli, Proc. Natl. Acad. Sci. USA 70:1514.PubMedCrossRefGoogle Scholar
  4. Britten, R. J., and McClure, F. T., 1962, The amino acid pool in Escherichia coli, Bacteriol. Rev. 26:292.PubMedGoogle Scholar
  5. Britten, R. J., Roberts, R. B., and French, E. F., 1955, Amino acid adsorption and protein synthesis in Escherichia coli, Proc. Natl. Acad. Sci. USA 41:363.CrossRefGoogle Scholar
  6. Caldwell, P. C., 1956, Intracellular pH, Int. Rev. Cytol. 5:229.CrossRefGoogle Scholar
  7. Carter, J. R., Fox, C. F., and Kennedy, E. P., 1968, Interaction of sugars with the membrane protein component of the lactose transport system of Escherichia coli, Proc. Natl. Acad. Sci. USA 60:725.PubMedCrossRefGoogle Scholar
  8. Chance, B., and Mela, L., 1966, Hydrogen ion concentration changes in mitochondrial membranes, J. Biol. Chem. 241:4588.PubMedGoogle Scholar
  9. Chance, B., and Mela, L., 1967, Energy-linked changes of hydrogen ion concentration in submitochondrial particles, J. Biol. Chem. 242:830.PubMedGoogle Scholar
  10. Cirillo, V. P., 1966, Symposium on bioelectrochemistry of microorganisms. I. Membrane potentials and permeability, Bacteriol. Rev. 30:68.PubMedGoogle Scholar
  11. Cohen, G. N., and Rickenberg, H. V., 1956, Concentration spécifique réversible des amino acids chez Escherichia coli, Ann. Inst. Pasteur 91:693.Google Scholar
  12. Fisher, A., 1903, Vorlesungen über Bakterien, 2nd ed., Jena.Google Scholar
  13. Fox, C. F., and Wilson, G., 1968, The role of a phosphoenolpyruvate-dependent kinase system in β-glucoside catabolism in Escherichia coli, Proc. Natl. Acad. Sci. USA 59:988.PubMedCrossRefGoogle Scholar
  14. Fraenkel, D. G., Falcoz-Kelly, F., and Horecker, B. L., 1964, Utilization of glucose-6-phosphate by glucokinaseless and wild-type strains of Escherichia coli, Proc. Natl. Acad. Sci. USA 52:1207.PubMedCrossRefGoogle Scholar
  15. Ganesan, A. K., and Rotman, R., 1965, Transport systems for galactose and galactosides in Escherichia coli. I. Genetic determination and regulation of the methyl-galactoside permease, J. Mol. Biol. 16:42.CrossRefGoogle Scholar
  16. Harold, F. M., 1970, Antimicrobial agents and membrane function, in: Advances in Microbial Physiology, Vol. 4 (A. H. Rose and J. F. Wilkinson, eds.), pp. 45–104, Academic Press, New York.Google Scholar
  17. Harold, F. M., 1972, Conservation and transformation of energy by bacterial membranes, Bacteriol. Rev. 36:172.PubMedGoogle Scholar
  18. Harold, F. M., and Baarda, J. R., 1967, Gramicidin, valinomycin and cation permeability in Streptococcus faecalis, J. Bacteriol. 94:53.PubMedGoogle Scholar
  19. Harold, F. M., and Papineau, D., 1972, Cation transport and electrogenesis by Streptococcus faecalis. I. The membrane potential, J. Membr. Biol. 8:27.PubMedCrossRefGoogle Scholar
  20. Harold, F. M., Pavlasova, E., and Baarda, J. R., 1970, A transmembrane pH gradient in Streptococcus faecalis: Origin, and dissipation by proton conductors and N,N′-dicyclohexylcarbodiimide, Biochim. Biophys. Acta 196:235.PubMedCrossRefGoogle Scholar
  21. Heinz, E., 1954, Kinetic studies on the “influx” of glycine-1-C14 into the Ehrlich mouse ascites carcinoma cell, J. Biol. Chem. 211:781.PubMedGoogle Scholar
  22. Hertzberg, E. L., and Hinkle, P. C., 1974, Oxidative phosphorylation and proton trans-location in membrane vesicles from Escherichia coli, Biochem. Biophys. Res. Commun. 58:178.PubMedCrossRefGoogle Scholar
  23. Herzenberg, L. A., 1959, Studies on the induction of β-galactosidase in a cryptic strain of Escherichia coli, Biochim. Biophys. Acta 31:525.PubMedCrossRefGoogle Scholar
  24. Hinds, T. R., and Brodie, A. F., 1974, Relationship of a proton gradient to the active transport of proline with membrane vesicles from Mycobacterium phlei, Proc. Natl. Acad. Sci. USA 71:1202.PubMedCrossRefGoogle Scholar
  25. Hirata, H., Altendorf, K., and Harold, F. M., 1973, Role of an electrical potential in the coupling of metabolic energy to active transport by membrane vesicles of Escherichia coli, Proc. Natl. Acad. Sci. USA 70:1804.PubMedCrossRefGoogle Scholar
  26. Hirata, H., Altendorf, K., and Harold, F. M., 1974, Energy coupling in membrane vesicles of Escherichia coli. 1. Accumulation of metabolites in response to an electrical potential, J. Biol. Chem. 249:2939.PubMedGoogle Scholar
  27. Hoffman, J. F., and Laris, P. C., 1974, Determination of membrane potentials in human and Amphiuma red blood cells using a fluorescent probe, J. Physiol. (London) 239:519.Google Scholar
  28. Jacquez, J. A., 1961, Transport and exchange diffusion of l-tryptophan in Ehrlich cells, Am. J. Physiol. 200:1063.PubMedGoogle Scholar
  29. Kaback, R., 1971, Bacterial membranes, in: Methods in Enzymology, Vol. XXII (W. B. Jakoby, ed.), pp. 99–120, Academic Press, New York.Google Scholar
  30. Kashket, E. R., and Wilson, T. H., 1972a, Role of metabolic energy in the transport of β-galactosides by Streptococcus lactis, J. Bacteriol. 109:784.PubMedGoogle Scholar
  31. Kashket, E. R., and Wilson, T. H., 1972b, Galactoside accumulation associated with ion movements in Streptococcus lactis, Biochem. Biophys. Res. Commun. 49:615.PubMedCrossRefGoogle Scholar
  32. Kashket, E. R., and Wilson, T. H., 1973, Proton-coupled accumulation of galactoside in Streptococcus lactis 7962, Proc. Natl. Acad. Sci. USA 70:2866.PubMedCrossRefGoogle Scholar
  33. Kashket, E. R., and Wilson, T. H., 1974, Protonmotive force in fermenting Streptococcus lactis 7962 in relation to sugar accumulation, Biochem. Biophys. Res. Commun. 59:879.PubMedCrossRefGoogle Scholar
  34. Kepes, A., 1960, Études cinétiques sur la galactoside perméase d’Escherichia coli, Biochim. Biophys. Acta 40:70.PubMedCrossRefGoogle Scholar
  35. Kepes, A., 1971, The β-galactoside permease of Escherichia coli, J. Membr. Biol. 4:87.CrossRefGoogle Scholar
  36. Klein, W. L., and Boyer, P. D., 1972, Energization of active transport by Escherichia coli, J. Biol. Chem. 247:7257.PubMedGoogle Scholar
  37. Koch, A. L., 1963, The role of permease in transport, Biochim. Biophys. Acta 79:177.Google Scholar
  38. Koch, A. L., 1971, Energy expenditure is obligatory for the downhill transport of galactosides, J. Mol. Biol. 59:447.PubMedCrossRefGoogle Scholar
  39. Kotẏk, A., 1963, Intracellular pH of baker’s yeast, Folia Microbiol. 8:27.CrossRefGoogle Scholar
  40. Kundig, W., and Roseman, S., 1971, Isolation of a phosphotransferase system from Escherichia coli, J. Biol. Chem. 246:1393.PubMedGoogle Scholar
  41. Laris, P. C., and Hoffman, J. F., 1973, Membrane potential in human red blood cells determined using a fluorescent probe, Fed. Proc. 32:271 (abst.).Google Scholar
  42. Laris, P. C., and Pershadsingh, H. A., 1974, Estimations of membrane potentials in Streptococcus faecalis by means of a fluorescent probe, Biochem. Biophys. Res. Commun. 57:620.PubMedCrossRefGoogle Scholar
  43. Lawford, H. C., and Haddock, B. A., 1973, Respiration-driven proton translocation in Escherichia coli, Biochem. J. 136:217.PubMedGoogle Scholar
  44. Leder, I. G., 1972, Interrelated effects of cold shock and osmotic pressure on the permeability of the Escherichia coli membrane to permease accumulated substrates, J. Bacteriol. 111:211.PubMedGoogle Scholar
  45. Leive, L., 1968, Studies on the permeability change produced in coliform bacteria by ethylenediamine tetraacetate, J. Biol. Chem. 243:2373.PubMedGoogle Scholar
  46. Levi, H., and Ussing, H. H., 1948, The exchange of sodium and chloride ions across the fibre membrane of the isolated frog sartorius, Acta Physiol. Scand. 16:232.CrossRefGoogle Scholar
  47. Levine, M., Oxender, D. L., and Stein, W. D., 1965, The substrate facilitated transport of the glucose carrier across the human erythrocyte membrane, Biochim. Biophys. Acta 109:151.PubMedCrossRefGoogle Scholar
  48. Liberman, E. A., and Skulachev, V. P., 1970, Conversion of biomembrane-produced energy into electrical form. IV. General discussion, Biochim. Biophys. Acta 216:30.PubMedCrossRefGoogle Scholar
  49. Mager, J., Kuczynski, M., Schatzberg, G., and Avidor, Y., 1956, Turbidity changes in bacterial suspensions in relation to osmotic pressure, J. Gen. Microbiol. 14:69.PubMedGoogle Scholar
  50. Maloney, P. C., and Wilson, T. H., 1973, Quantitative aspects of active transport by the lactose transport system of Escherichia coli, Biochim. Biophys. Acta 330:196.PubMedCrossRefGoogle Scholar
  51. Maloney, P. C., and Wilson, T. H., 1974, Metabolic control of lactose entry in Escherichia coli, Abst. Ann. Meeting, Am. Soc. Microbiol., item P 292.Google Scholar
  52. Mitchell, P., 1963, Molecule, group and electron translocation through natural membranes, Biochem. Soc. Symp. 22:142.Google Scholar
  53. Mitchell, P., 1966, Chemiosmotic coupling in oxidative and photosynthetic phosphorylation, Biol. Rev. Cambridge Philos. Soc. 41:445.PubMedCrossRefGoogle Scholar
  54. Mitchell, P., and Moyle, J., 1956, Osmotic function and structure in bacteria, in: Bacterial Anatomy: Symposium of the Society for General Microbiology, Vol. 6 (E. T. C. Spooner and B. A. D. Stocker, eds.), pp. 150–180, Cambridge University Press, Cambridge.Google Scholar
  55. Mitchell, P., and Moyle, J., 1967, Acid-base titration across the membrane system of rat-liver mitochondria, Biochem. J. 105:588.Google Scholar
  56. Mitchell, P., and Moyle, J., 1968, Estimation of membrane potential and pH difference across the cristae membrane of rat liver mitochondria, Eur. J. Biochem. 4:530.PubMedCrossRefGoogle Scholar
  57. Niven, D. F., and Hamilton, W. A., 1974, Mechanisms of energy coupling to the transport of amino acids by Staphylococcus aureus, Eur. J. Biochem. 44:517.PubMedCrossRefGoogle Scholar
  58. Niven, D. F., Jeacock, R. E., and Hamilton, W. A., 1973, The membrane potential as the driving force for the accumulation of lysine by Staphylococcus aureus, FEBS Lett. 29:248.PubMedCrossRefGoogle Scholar
  59. Novick, A., and Weiner, M., 1957, Enzyme induction as an all-or-none phenomenon, Proc. Natl. Acad. Sci. USA 43:553.PubMedCrossRefGoogle Scholar
  60. Novotny, C. P., and Englesberg, E., 1966, The l-arabinase permease system in Escherichia coli B/r, Biochim. Biophys. Acta 117:217.PubMedCrossRefGoogle Scholar
  61. Park, C. R., Post, R. L., Kaiman, C. F., Wright, J. H., Johnson, L. H., and Morgan, H. E., 1956, The transport of glucose and other sugars across cell membranes and the effect of insulin, in: Ciba Foundation Colloquia on Endocrinology. Internal Secretion of the Pancreas, Vol. 9, pp. 240–260.Google Scholar
  62. Rickenberg, H. V., Cohen, G. N., Buttin, G., and Monod, J., 1956, La galactoside permease d’Escherichia coli, Ann. Inst. Pasteur 91:829.Google Scholar
  63. Ring, K., 1965, The effect of low temperatures on permeability in Streptomyces hydrogenans, Biochem. Biophys. Res. Commun. 19:576.PubMedCrossRefGoogle Scholar
  64. Robbie, J. P., and Wilson, T. H., 1969, Transmembrane effects of β-galactosides on thio-methyl-β-galactoside transport in Escherichia coli, Biochim. Biophys. Acta 173:234.PubMedCrossRefGoogle Scholar
  65. Rotman, B., and Guzman, R., 1961, Transport of galactose from the inside to the outside of the cell, Extrait de Pathologie-Biologie 9:806.Google Scholar
  66. Rottenberg, H., and Grunwald, T., 1972, Determination of Δ pH in chloroplasts. 3. Ammonium uptake as a measure of Δ pH in chloroplasts and sub-chloroplast particles, Eur. J. Biochem. 25:71.PubMedCrossRefGoogle Scholar
  67. Rottenberg, H., Grunwald, T., and Avron, M., 1972, Determination of Δ pH in chloroplasts. 1. Distribution of [14C]-methylamine, Eur. J. Biochem. 25:54.PubMedCrossRefGoogle Scholar
  68. Sano, Y., Wilson, T. H., and Lin, E. C. C., 1968, Control of permeation to glycerol in cells of Escherichia coli, Biochem. Biophys. Res. Commun. 32:344.CrossRefGoogle Scholar
  69. Scholes, P., and Mitchell, P., 1970a, Acid-base titration across the plasma membrane of Micrococcus denitrificans: Factors affecting the effective proton conductance and the respiratory rate, J. Bioenerg. 1:61.PubMedCrossRefGoogle Scholar
  70. Scholes, P., and Mitchell, P., 1970b, Respiration-driven proton translocation in Micro-coccus denitrificans, J. Bioenerg. 1:309.CrossRefGoogle Scholar
  71. Schuldiner, S., Rottenberg, H., and Avron, M., 1972, Determination of Δ pH in chloroplasts. 2. Fluorescent amines as a probe for the determination of Δ pH in chloroplasts, Eur. J. Biochem. 25:64.PubMedCrossRefGoogle Scholar
  72. Schultz, S. G., and Curran, P. F., 1970, Coupled transport of sodium and organic solutes, Physiol. Rev. 50:637.PubMedGoogle Scholar
  73. Sims, P. J., Waggoner, A. L., Wang, C. H., and Hoffman, J. F., 1974, Studies on the mechanism by which cyanine dyes measure membrane potentials in red blood cells and phosphatidyl choline vesicles, Biochemistry 13:3315.PubMedCrossRefGoogle Scholar
  74. Sistrom, W. R., 1958, On the physical state of intracellularly accumulated substrates of β-galactoside-permease in Escherichia coli, Biochim. Biophys. Acta 29:579.PubMedCrossRefGoogle Scholar
  75. Skulachev, V. P., 1971, Energy transformations in the respiratory chain, Curr. Top. Bioenerg. 4:127.Google Scholar
  76. Sullivan, K. H., Jain, M. K., and Koch, A. L., 1974, Activation of the β-galactoside transport system in Escherichia coli by n-alkanols: Modification of lipid-protein interaction by a change in bilayer fluidity, Biochim. Biophys. Acta 352:287.PubMedCrossRefGoogle Scholar
  77. Tanaka, S., Fraenkel, D. G., and Lin, E. C. C., 1967, The enzymatic lesion of strain MM-6, a pleiotropic carbohydrate-negative mutant of Escherichia coli, Biochem. Biophys. Res. Commun. 27:63.PubMedCrossRefGoogle Scholar
  78. Thayer, W. S., and Hinkle, P. C., 1973, Stoichiometry of adenosine triphosphate-driven proton translocation in bovine heart submitochondrial particles, J. Biol. Chem. 248:5395.PubMedGoogle Scholar
  79. Waddell, W. J., and Bates, R. G., 1969, Intracellular pH, Physiol. Rev. 49:285.PubMedGoogle Scholar
  80. Waddell, W. J., and Butler, T. C., 1959, Calculation of intracellular pH from the distribution of 5,5-dimethyl-2,4-oxazolidinedione (DMO): Application to skeletal muscle of the dog, J. Clin. Invest. 38:720.PubMedCrossRefGoogle Scholar
  81. Wallenfels, K., and Kurz, G., 1962, Über die Spezifität der Galaktosedehydrogenase aus Pseudomonas saccharaphila und deren Anwendung als analytisches Hilfmittel, Biochem. Z. 335:559.PubMedGoogle Scholar
  82. Weibull, C., 1953, The isolation of protoplasts from Bacillus megaterium by controlled treatment with lysozyme, J. Bacteriol. 66:688.PubMedGoogle Scholar
  83. West, I. C., 1970, Lactose transport coupled to proton movements in Escherichia coli, Biochem. Biophys. Res. Commun. 41:655.PubMedCrossRefGoogle Scholar
  84. West, I. C., and Mitchell, P., 1972, Proton-coupled β-galactoside translocation in non-metabolizing Escherichia coli, J. Bioenerg. 3:445.PubMedCrossRefGoogle Scholar
  85. West, I. C., and Mitchell, P., 1973, Stoichiometry of lactose-H+ symport across the plasma membrane of Escherichia coli, Biochem. J. 132:587.PubMedGoogle Scholar
  86. West, I. C., and Wilson, T. H., 1973, Galactoside transport dissociated from proton movement in mutants of Escherichia coli, Biochem. Biophys. Res. Commun. 50:551.PubMedCrossRefGoogle Scholar
  87. Widdas, W. F., 1952, Inability of diffusion to account for placental glucose transfer in the sheep and consideration of the kinetics of a possible carrier transfer, J. Physiol. (London) 118:23.Google Scholar
  88. Wilbrandt, W., 1972, Coupling between simultaneous movements of carrier substrates, J. Membr. Biol. 10:357.PubMedCrossRefGoogle Scholar
  89. Winkler, H. H., and Wilson, T. H., 1966, The role of energy coupling in the transport of β-galactosides by Escherichia coli, J. Biol Chem. 241:2200.PubMedGoogle Scholar
  90. Wong, P. T. S., and Wilson, T. H., 1970, Counterflow of galactosides in Escherichia coli, Biochim. Biophys. Acta 196:336.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Peter C. Maloney
    • 1
  • E. R. Kashket
    • 1
  • T. H. Wilson
    • 1
  1. 1.Department of PhysiologyHarvard Medical SchoolBostonUSA

Personalised recommendations