Advertisement

Factors Affecting the Combustion of Polystyrene and Styrene

  • R. V. Petrella

Abstract

The widespread use of polystyrene and its copolymers in modern society predicates an increasing awareness of the combustibility associated with the styrenic structure. The 1975 consumption of styrenic polymers has been estimated at 1.8 million metric tons (3.98 billion lb) of which 67% is the homopolymer.(1) The problems pertinent to the pyrolysis and combustion of styrene polymers are only slightly modified by the addition of comonomers such as acrylonitrile, butadiene, and methyl methacrylate. A basic knowledge of the modes of pyrolytic decomposition and the high-temperature reactions of the products with the oxygen in the atmosphere is necessary to a rational approach to the problem of flame inhibition.

Keywords

Flame Retardant Flame Front Pyrolysis Product Flame Temperature Limit Oxygen Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anon., Mod. Plast. 53 (1), 44 (Jan. 1976).Google Scholar
  2. 2.
    J. W. Lyons, The Chemistry and Uses of Fire Retardants, Wiley, New York (1970).Google Scholar
  3. 3.
    C. J. Hilado, Flammability Handbook for Plastics, 2nd ed., Technomics, Westport, Conn. (1974).Google Scholar
  4. 4.
    W. C. Kuryla and A. J. Papa, Flame Retardance of Polymeric Materials, Dekker, New York (1973).Google Scholar
  5. 5.
    R. H. Boundy and R. F. Kryer, Styrene, Its Polymer, Copolymer and Derivatives, ACS Monograph No. 115, Holt, Reinhart and Winston, New York (1952).Google Scholar
  6. 5a.
    R. F. Boyer, Encyclopedia of Polymer Science and Technology, Vol. 13, Wiley, New York (1970).Google Scholar
  7. 6.
    D. W. Van Krevelen, Properties of Polymer, American Elsevier, New York (1972).Google Scholar
  8. 7.
    D. R. Stull, The Dow Chemical Company, unpublished data (1958).Google Scholar
  9. 8.
    M. Lewin, S. M. Atlas, and E. M. Pearce, eds., Flame-Retardant Polymeric Materials, Vol. 1, Plenum Press, New York (1975).Google Scholar
  10. 9.
    H. Staudinger, M. Brunner, K. Frey, P. Garbsch, R. Singer, and S. Wherli, Ber. 62B, 241 (1929).Google Scholar
  11. 10.
    S. L. Madorsky, J. Polym. Sci. 9, 133 (1952).CrossRefGoogle Scholar
  12. 11.
    S. L. Madorsky, J. Polym. Sci. 11, 491 (1953).CrossRefGoogle Scholar
  13. 12.
    H. H. G. Jellinek, J. Polym. Sci. 9, 13 (1949).Google Scholar
  14. 13.
    R. V. Petrella, T. L. Spink, and L. T. Finlayson, Rev. Sci. Instrum. 37, 1500 (1966).CrossRefGoogle Scholar
  15. 14.
    R. V. Petrella and G. D. Sellers, Combust. Flame 16, 83 (1971).CrossRefGoogle Scholar
  16. 15.
    R. V. Petrella, The Dow Chemical Company, unpublished data (1968).Google Scholar
  17. 16.
    S. L. Madorsky, Thermal Degradation of Organic Polymers, Wiley-Interscience, New York (1964).Google Scholar
  18. 17.
    Polymer Degradation Mechanism, National Bureau of Standards Circular 525, National Bureau of Standards, Washington, D.C. (1953).Google Scholar
  19. 18.
    R. G. W. Norrish, G. Porter, and B. A. Thrush, Proc. Roy. Soc. London Ser. A 216, 165 (1953).CrossRefGoogle Scholar
  20. 19.
    K. H. L. Erhard and R. G. W. Norrish, Proc. Roy. Soc. London Ser. A 234, 178 (1956).CrossRefGoogle Scholar
  21. 20.
    A. B. Callear and R. G. W. Norrish, Proc. Roy. Soc. London Ser. A 259, 309 (1960).Google Scholar
  22. 21.
    R. G. W. Norrish, Chem. Br. 1, 289 (1965).Google Scholar
  23. 22.
    L. S. Nelson and N. A. Kuebler, J. Chem. Phys. 37, 47 (1962).CrossRefGoogle Scholar
  24. 23.
    L. S. Nelson and N. A. Kuebler, Appl. Opt. 1, 77S (1962).Google Scholar
  25. 24.
    R. V. Petrella and T. L. Spink, J. Chem. Phys. 47, 488 (1967).CrossRefGoogle Scholar
  26. 25.
    R. V. Petrella and T. L. Spink, J. Chem. Phys. 48, 1445 (1968).CrossRefGoogle Scholar
  27. 26.
    W. J. Pearce, in Optical Spectrometer Measurements of High Temperature ( P. J. Dickerman, ed.) University of Chicago Press, Chicago (1961), pp. 142–151.Google Scholar
  28. 27.
    A. Tewarson and R. F. Pion, Fire Technol. 11, 274 (1975).CrossRefGoogle Scholar
  29. 28.
    A. Tewarson and R. F. Pion, Combust. Flame 26, 85 (1976).CrossRefGoogle Scholar
  30. 29.
    C. H. Dieke and H. M. Crosswhite, The Johns Hopkins University, Department of Physics, Bumblebee Report No. 87, Baltimore (1948).Google Scholar
  31. 30.
    G. Porter and B. Ward, Proc. Chem. Soc. London 1964, 288.Google Scholar
  32. 31.
    J. deRis and L. Orloff, in Fifteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh (1975), pp. 175–182.Google Scholar
  33. 32.
    A. Tewarson, Heat Release Rates from Burning Plastics, paper presented at the Flammability and Combustion of Non-Metallic Materials Symposium of the 172nd National Meeting of the American Chemical Society, San Francisco, Sept. 1976.Google Scholar
  34. 33.
    E. R. Larsen, J. Fire Flammability Fire Retardant Chem. Suppl. 1, 4 (1974).Google Scholar
  35. 34.
    E. R. Larsen, J. Fire Flammability Fire Retardant Chem. Suppl. 2, 5 (1975).Google Scholar
  36. 35.
    G. J. Minkoff and C. F. H. Tipper, Chemistry of Combustion Reactions, Butterworth’s, London (1962).Google Scholar
  37. 36.
    V. Ya. Shtern, The Gas-Phase Oxidation of Hydrocarbons, Macmillan, New York (1964).Google Scholar
  38. 37.
    W. A. Rosser, H. Wise, and J. Miller, in Seventh Symposium (International) on Combustion, The Combustion Institute, Pittsburgh (1959), p. 175.Google Scholar
  39. 38.
    R. N. Butler and R. F. Simmons, Combust. Flame 12, 447 (1968).CrossRefGoogle Scholar
  40. 39.
    W. E. Wilson, J. T. O’Donovan, and R. M. Fristrom, in Twelfth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh (1968), p. 929.Google Scholar
  41. 40.
    G. A. Takacs and G. P. Glass, J. Phys. Chem. 77, 1060 (1973).CrossRefGoogle Scholar
  42. 41.
    N. Cohen, R. R. Giedt, and T. A. Jacobs, J. Chem. Kinet. 5, 425 (1973).CrossRefGoogle Scholar
  43. 42.
    R. M. Fristrom and A. A. Westenberg, Flame Structure, McGraw-Hill, New York (1965), pp. 341–379.Google Scholar
  44. 43.
    J. E. Nicholas and R. G. W. Norrish, Proc. Roy. Soc. London Ser. A 309, 171 (1969).CrossRefGoogle Scholar
  45. 44.
    C. P. Fenimore and F. J. Martin, Combust. Flame 10, 135 (1966).CrossRefGoogle Scholar
  46. 45.
    R. B. Ludwig and S. Bergman, Flame Retardant Additives for Styrenic Resins, presented at the Fire Retardant Chemicals Association Conference at New York, 1975, Article 20–22Google Scholar
  47. 46.
    J. Green and J. Versnel, J. Fire Flammability Fire Retardant Chem. Suppl. 1, 185 (1974).Google Scholar
  48. 47.
    A. E. Finnerty, The Effects of Halons on the Auto Ignition Temperature of Propane, Interim Memorandum Report No. 415, Aberdeen Proving Grounds, Maryland (July 1975).Google Scholar
  49. 48.
    R. V. Petrella and H. R. Frick, Mechanism of Extinguishment of Jet Fuel Fires, presented at the Energy Conversion Conference, University of Denver, Nov. 20–21, 1975.Google Scholar
  50. 49.
    J. Eichhorn, J. Appl. Polym. Sci. 8, 2497 (1964).CrossRefGoogle Scholar
  51. 50.
    J. W. Hastie, Combust. Flame 21, 49 (1973).CrossRefGoogle Scholar
  52. 51.
    C. P. Fenimore, Combust. Flame 12, 155 (1968).CrossRefGoogle Scholar
  53. 52.
    G. L. Deets, J. Fire Flammability Flame Retardant Chem. Suppl. 1, 26 (1974).Google Scholar
  54. 53.
    C. J. Hilado, Flammability Test Methods Handbook, Technomics, Westport, Conn. (1973).Google Scholar
  55. 54.
    R. Friedman, J. Fire Flammability 2, 240 (1971).Google Scholar
  56. 55.
    J. deRis, in Conference-Polymers Materials for Unusual Service Conditions, NASA Ames Research Center, Moffet Field, Calif. (Nov. 1972).Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • R. V. Petrella
    • 1
  1. 1.Olefin Plastics DepartmentThe Dow Chemical CompanyMidlandUSA

Personalised recommendations