A Dye-Buoyant-Density Method for the Detection and Isolation of Closed Circular Duplex DNA: The Closed Circular DNA in HeLa Cells

  • Roger Radloff
  • William Bauer
  • Jerome Vinograd
Part of the Milestones in Current Research book series (MCR)


Covalently closed circular duplex DNA’s are now known to be widespread among living organisms. This DNA structure, originally identified in polyoma viral DNA,1’2 has been assigned to the mitochondrial DNA’s in ox3 and sheep heart,4 in mouse and chicken liver,3 and in unfertilized sea urchin egg.5 The animal viral DNA’s—polyoma, SV40,6 rabbit7 and human8 papilloma—the intracellular forms of the bacterial viral DNA’s—φX174,9, 10 lambda,11, 12 M13,13 and P2214—and a bacterial plasmid DNA, the colicinogenic factor E2,15 have all been shown to exist as closed circular duplexes. Other mitochondrial DNA’s16, 17 and a portion of the DNA from boar sperm18 have been reported to be circular, but as yet have not been shown to be covalently closed.


HeLa Cell Dense Band Buoyant Density Boar Sperm HeLa Cell Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dulbecco, R., and M. Vogt, these Proceedings, 50, 236 (1963).Google Scholar
  2. 2.
    Weil, R., and J. Vinograd, these Proceedings, 50, 730 (1963).Google Scholar
  3. 3.
    Borst, P., and G. J. C. M. Ruttenburg, Biochim. Biophys. Acta, 114, 645 (1965).Google Scholar
  4. 4.
    Kroon, A. M., P. Borst, E. F. J. Van Bruggen, and G. J. C. M. Ruttenburg, these Proceedings, 56, 1836(1966).Google Scholar
  5. 6.
    Crawford, L. V., and P. H. Black, Virology, 24, 388 (1964).PubMedCrossRefGoogle Scholar
  6. 7.
    Crawford, L. V., J. Mol. Biol., 8, 489 (1964).PubMedCrossRefGoogle Scholar
  7. 9.
    Burton, A., and R. L. Sinsheimer, J. Mol. Biol., 14, 3276 (1965).CrossRefGoogle Scholar
  8. 10.
    Kleinschmidt, A. K., A. Burton, and R. L. Sinsheimer, Science, 142, 1961 (1963).CrossRefGoogle Scholar
  9. 11.
    Young, E. T., II, and R. L. Sinsheimer, J. Mol. Biol., 10, 562 (1964).PubMedCrossRefGoogle Scholar
  10. 12.
    Bode, V. C., and A. D. Kaiser, J. Mol. Biol., 14, 399 (1965).PubMedCrossRefGoogle Scholar
  11. 13.
    Play, D. S., A. Preuss, and P. H. Hofschneider, J. Mol. Biol., 21, 485 (1966).CrossRefGoogle Scholar
  12. 16.
    David, I. B., these Proceedings, 56, 269 (1966).Google Scholar
  13. 17.
    Nass, M. M. K., these Proceedings, 56, 1215 (1966).Google Scholar
  14. 18.
    Hotta, Y., and A. Bassel, these Proceedings, 53, 356 (1965).Google Scholar
  15. 19.
    Vinograd, J., J. Lebowitz, R. Radloff, R. Watson, and P. Laipis, these Proceedings, 53, 1104 (1965).Google Scholar
  16. 20.
    Vinograd, J., and J. Lebowitz, J. Gen. Physiol., 49, 103 (1966).PubMedCrossRefGoogle Scholar
  17. 21.
    Vinograd, J., R. Bruner, R. Kent, and J. Weigle, these Proceedings, 49, 902 (1963).Google Scholar
  18. 22.
    M. Gellert, these Proceedings, 57, 148 (1967).Google Scholar
  19. 25.
    Kersten, W., H. Kersten, and W. Szybalski, Biochemistry, 5, 236 (1966).PubMedCrossRefGoogle Scholar
  20. 26.
    Waring, M. J., Biochim. Biophys. Acta, 114, 234 (1966).PubMedCrossRefGoogle Scholar
  21. 28.
    Hirt, B., these Proceedings, 55, 997 (1966).Google Scholar
  22. 29.
    Kleinschmidt, A. K., and R. K. Zahn, Z. Naturforsch., 14b, 770 (1959).Google Scholar
  23. 30.
    LePecq, J., and C. Paoletti, Anal. Biochem., 17, 100 (1966).CrossRefGoogle Scholar
  24. 31.
    Young, E. T., II, and R. L. Sinsheimer, private communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Roger Radloff
  • William Bauer
  • Jerome Vinograd

There are no affiliations available

Personalised recommendations