Advertisement

The Twisted Circular Form of Polyoma Viral DNA

  • J. Vinograd
  • J. Lebowitz
  • R. Radloff
  • R. Watson
  • P. Laipis
Part of the Milestones in Current Research book series (MCR)

Abstract

The major part of the DNA from polyoma virus has been shown to consist of circular base-paired duplex molecules without chain ends.1–3 The intertwined circular form accounts for the ease of renaturation4 of this DNA and the failure of the strands to separate in strand-separating solvents.1–3

Keywords

Sedimentation Velocity Linear Molecule Sedimentation Coefficient Circular Form Polyoma Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. 1.
    Dulbecco, R., and M. Vogt, these Proceedings, 50, 236 (1963).Google Scholar
  2. 2.
    Weil, R., and J. Vinograd, these Proceedings, 50, 730 (1963).Google Scholar
  3. 3.
    Crawford, L. V., and P. H. Black, Virology, 24, 388 (1964).PubMedCrossRefGoogle Scholar
  4. 4.
    Weil, R., these Proceedings, 49, 480 (1963).Google Scholar
  5. 5.
    Crawford, L. V., R. Dulbecco, M. Fried, L. Montagnier, and M. Stoker, these Proceedings, 52, 148(1964).Google Scholar
  6. 6.
    Winocour, E., Virology, 19, 158 (1963).PubMedCrossRefGoogle Scholar
  7. 7.
    Murikami, W., Science, 142, 56 (1963).CrossRefGoogle Scholar
  8. 8.
    Vinograd, J., R. Bruner, R. Kent, and J. Weigle, these Proceedings, 49, 902 (1963).Google Scholar
  9. 10.
    Hanlon, S., K. Lamers, G. Lauterbach, R. Johnson, and H. K. Schachman, Arch. Biochem. Biophys., 99, 157(1962).PubMedCrossRefGoogle Scholar
  10. 11.
    Lehman, I. R., G. G. Roussos, and E. A. Pratt, J. Biol. Chem., 237, 819 (1962).PubMedGoogle Scholar
  11. 12.
    Lehman, I. R., J. Biol. Chem., 235, 1479 (1960).PubMedGoogle Scholar
  12. 14.
    Lebowitz, J., and M. Laskowski, Jr., Biochemistry, 1, 1044 (1962).CrossRefGoogle Scholar
  13. 15.
    Kleinschmidt, A. K., and R. K. Zahn, Z. Naturforsch., 14b, 770 (1959).Google Scholar
  14. 16.
    Swan, J. M., Nature, 180, 643 (1957).CrossRefGoogle Scholar
  15. 17.
    Thomas, C. A., Jr., J. Am. Chem. Soc., 78, 1861 (1956). The estimate of 50 was obtained for the case of a 10% lowering of the weight average molecular weight.CrossRefGoogle Scholar
  16. 18.
    Studier, F. Wm., J. Mol. Biol., 11, 373 (1965).PubMedCrossRefGoogle Scholar
  17. 19.
    Fiers, W., and R. L. Sinsheimer, J. Mol. Biol., 5, 408 (1962).PubMedCrossRefGoogle Scholar
  18. 20.
    Davidson, P. F., and D. Freifelder, J. Mol. Biol., 5, 643 (1962).CrossRefGoogle Scholar
  19. 22.
    Hershey, A. D., E. Burgi, and L. Ingraham, these Proceedings, 49, 748 (1963).Google Scholar
  20. 23.
    Crawford, L. V., J. Mol. Biol., 8, 489 (1964).PubMedCrossRefGoogle Scholar
  21. 24.
    Kleinschmidt, A., A. Burton, and R. L. Sinsheimer, Science, 142, 961 (1963).PubMedCrossRefGoogle Scholar
  22. 25.
    Burton, A., and R. L. Sinsheimer, Science, 142, 962 (1963).PubMedCrossRefGoogle Scholar
  23. 30.
    Jansz, H. S., and P. H. Pouwels, Biochem. Biophys. Res. Commun., 18, 589 (1965).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • J. Vinograd
  • J. Lebowitz
  • R. Radloff
  • R. Watson
  • P. Laipis

There are no affiliations available

Personalised recommendations