RoManSy 6 pp 131-138 | Cite as

Redundant Manipulators and Kinematic Singularities The Operational Space Approach

  • O. Khatib


The operational space formulation has provided a fundamental tool for the description of the dynamic behavior and control of manipulator end-effectors. In this paper, we present the extension of this formulation to redundant manipulator systems. The end-effector equations of motion in operational space of a redundant manipulator are established, and its behavior with respect to generalized joint forces is described. The end-effector is controlled by an operational space control system based on these equations of motion. Asymptotic stabilization of the mechanism is achieved by the use of dissipative joint forces selected from the null space of the Jacobian transpose matrix, consistent with the manipulator dynamics. This allows the elimination of any effects of these additional forces on the end-effector behavior and maintains its dynamic decoupling. We also present a new and systematic approach for dealing with the problems araising at kinematic singularities. The basic philosophy behind this approach is the treatment of the manipulator, at singular configuration, as a mechanism that is redundant with respect to the motion of the end-effector in the subspace of operational space orthogonal to the singular direction.


Operational Space Jacobian Matrix Force Vector Generalize Inverse Joint Force 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Espian, B, and Bostic, R. 1985 (November). Collision Avoidance for Redundant Robots with Proximity Sensors. Preprints of the 3 rd International Symposium in Robotics Research, pp. 94–02. Gouvienx, France.Google Scholar
  2. Fournier, A. 1980 (April). Génération de Mouvements en Robotique. Application des Inverses Généralisées et des Pseudo Inverses. Thése d’Elat, Mention Science, Université des Sciences et Techniques du Languedoc, Montpellier, France.Google Scholar
  3. Hanafusa, H., Yoshikawa, T., and Nakamura, Y., 1981. Analysis and Control of Articulated Robot Arms with Redundancy. 8th IFAC World Congress, vol. XIV, pp. 38–83.Google Scholar
  4. Ifollerbach, J.M. and Sub, K.C. 1985 (March 25–28). Redundancy Resolution of Manipulators Through Torque Optimization. 1985 International Conference on Robotics and Automation. St. Louis.Google Scholar
  5. Khatib, O. 1980. Commande Dynamique dans l’Espace Opérationnel des Robots Manipulateurs en Présence d’Obstacles. Thèse de Docteur-Ingénieur. Ecole Nationale Supérieure de l’Aéronautique et de l’Espace ( ENSAE ). Toulouse, France.Google Scholar
  6. Khatib, O. 1983 (December 15–20). Dynamic Control of Manipulators in Operational Space. Proceedings of The Sixth CISM-IFToMM Congress on Theory of Machines and Mechanisms, pp. 11281131, New Delhi, India (Wiley, New Delhi ).Google Scholar
  7. Khatib, O. 1985 (October). The Operational Space Formulation in the Analysis, Design, and Control of Manipulators. The Third International Symposium of Robotics Research, Paris, France.Google Scholar
  8. Khatib, O. and Burdick, J. 1986 (April). Motion and Force Control of robot Manipulator. The 1986 IEEE International Conference in Robotics and Automation, San Francisco.Google Scholar
  9. Kircanski, M. and Vukobratovic, M. 1984 (Jane). Trajectory Planning for Redundant Manipulators in Presence of Obstacles. Preprints of the 5’ CISM-IFToMM Symposium on the Theory and Practice of Robots and Manipulators, pp. 43–58. Udine, Italy.Google Scholar
  10. Liegois, A. 1977 (December). Automatic Supervisory Control of the Configuration and Behavior of Multibody Mechanisms. IEEE Transactions on Systems, Man and Cybernetics, vol. 7, no. 12.Google Scholar
  11. Luh, J.Y.S. and Gu, Y.L. 1985 (March). Industrial Robots with Seven Joints. Proc. 1985 IEEE International Conference on Robotics and Automation, pp. 1010–1015, St. Louis.Google Scholar
  12. Mingori, D.L. 1970. A Stability Theorem for Mechanical Systems with Constraint Damping. Journal of Applied Mechanics, Trans. of the ASME, pp. 253–258.Google Scholar
  13. Nakamura, Y. 1985 (June). Kinematical Studies on the Trajectory Control of Robot Manipulators. Ph.D. Thesis, Kyoto, Japan.Google Scholar
  14. Renaud, M. 1975 (December). Contribution à l’Étude de la Modélisation et de la Commande des Systèmes Mécaniques Articulés. Thèse de Docteur Ingénieur. Université Paul Sabatier, Toulouse.Google Scholar
  15. Rnmiantsev, V.V. 1970. On the Optimal Stabilization of Controlled Systems. PMM, vol. 34, no. 3, pp. 440–456.Google Scholar
  16. Whitney, D.E. 1969 (June). Resolved Motion Rate Control of Manipulators and Human Prostheses IEEE Transactions on Man Machine Systems, no. 10, vol. 2, pp. 47–53.Google Scholar

Copyright information

© Hermes, Paris 1987

Authors and Affiliations

  • O. Khatib
    • 1
  1. 1.Artificial Intelligence LaboratoryStanford UniversityStanfordUSA

Personalised recommendations