Pathogenesis of Hypertension: Genetic and Environmental Factors

  • Alan B. Weder
Part of the Atlas of Heart Diseases book series (AD)


Like obesity and diabetes, essential hypertension is one of the “diseases of civilization” that results from the collision of a modern lifestyle with Paleolithic genes.


Blood Pressure Essential Hypertension Dietary Sodium Dietary Salt Urinary Sodium Excretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Platt R: Heredity in hypertension. Q J Med 1947, 16: 111–113.PubMedGoogle Scholar
  2. 2.
    Pickering GW: The genetic factor in essential hypertension. Ann Intern Med 1955, 43: 457–464.PubMedGoogle Scholar
  3. 3.
    Ledingham JM: Genetics of human hypertension. In Hypertensive Cardiovascular Disease: Pathophysiology and Treatment. Edited by Amery A. The Hague/Boston/London: Martinus Nijhoff Publishers 1982: 206–216.CrossRefGoogle Scholar
  4. 4.
    Mongeau J-G, Brion P, Sing CF: The influence of genetics and household environment upon the variability of normal blood pressure: the Montreal Adoption Survey. Clin Exp Hypertens [A] 1986, 8: 653–660.CrossRefGoogle Scholar
  5. 5.
    Tambs K, Eaves LJ, Mourn T, et al.: Age-specific genetic effects for blood pressure. Hypertension 1993, 22: 789–795.PubMedCrossRefGoogle Scholar
  6. 6.
    Ward R: Familial aggregation and genetic epidemiology of blood pressure. In Hypertension: Pathophysiology, Diagnosis, and Management. Edited by Laragh JH, Brenner BM. New York: Raven Press Ltd; 1990: 81–100.Google Scholar
  7. 7.
    Schork NJ, Jokelainen P, Grant EJ, et al.: Relationship of growth and blood pressure in inbred rats. Am J Physiol 1994, 266: R702–R708.PubMedGoogle Scholar
  8. 8.
    St. Lezin E, Simonet L, Pravenec M, et al.: Hypertensive strains and normotensive “control” strains: how closely are they related? Hypertension 1992, 19: 419–424.PubMedCrossRefGoogle Scholar
  9. 9.
    Bruner CA, Myers JH, Sing CF, et al.: Genetic association of hypertension and vascular changes in stroke-prone spontaneously hypertensive rats. Hypertension 1986, 8: 904–910.PubMedCrossRefGoogle Scholar
  10. 10.
    Rapp JP: Characteristics of Dahl salt-susceptible and salt-resistant rats. In Handbook of Hypertension. Vol 4. Experimental and Genetic Models of Hypertension. Edited by de Jong W. New York: Elsevier Science Publishers; 1984: 286–295.Google Scholar
  11. 11.
    Harrap SB, Van Der Merwe WM, Griffin SA, et al.: Brief angiotensin-converting enzyme inhibitor treatment in young spontaneously hypertensive rats reduces blood pressure long-term. Hypertension 1990, 16: 603–614.PubMedCrossRefGoogle Scholar
  12. 12.
    Jacob HJ, Lindpaintner K, Lincoln SE, et al.: Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 1991, 67: 213–224.PubMedCrossRefGoogle Scholar
  13. 13.
    Hilbert P, Lindpaintner K, Beckmann JS, et al.: Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats. Nature 1991, 353: 521–529.PubMedCrossRefGoogle Scholar
  14. 14.
    Rapp JP, Wang S-M, Dene H: A genetic polymorphism in the renin gene of Dahl rats cosegregates with blood pressure. Science 1989, 243: 542–544.PubMedCrossRefGoogle Scholar
  15. 15.
    St. Lezin EM, Pravenec M, Kurtz TW: New genetic models for hypertension research. Trends Cardiovasc Med 1993, 3: 119–123.CrossRefGoogle Scholar
  16. 16.
    Ely DL, Daneshvar H, Turner ME, et al.: The hypertensive Y chromosome elevates blood pressure in F11 normotensive rats. Hypertension 1993, 21: 1071–1075.PubMedCrossRefGoogle Scholar
  17. 17.
    Ganten D, Lindpaintner K, Ganten U, et al.: Transgenic rats: new animal models in hypertension research. Hypertension 1991, 17: 843–855.PubMedCrossRefGoogle Scholar
  18. 18.
    Mullins JJ, Peters J, Ganten D: Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature 1990, 344: 541–544.PubMedCrossRefGoogle Scholar
  19. 19.
    Williams RR, Hunt SC, Hasstedt SJ, et al.: Definition of genetic factors in hypertension: a search for major genes, polygenes, and homogeneous subtypes. J Cardiovasc Pharmacol 1988, 12(suppl 3): S7–S20.PubMedGoogle Scholar
  20. 20.
    Lifton RP, Dluhy RG, Powers M, et al.: A chimaeric 11ß-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 1992, 355: 262–265.PubMedCrossRefGoogle Scholar
  21. 21.
    White R, Lalouel J-M: Chromosomal mapping with DNA markers. Sci Am 1988, 258: 40–48.PubMedCrossRefGoogle Scholar
  22. 22.
    Schuster H, Wienker TF, Bähring S, et al.: Severe autosomal dominant hypertension and brachydactyly in a unique Turkish kindred maps to human chromosome 12. Nat Genet, 1996; 13: 98–100.PubMedCrossRefGoogle Scholar
  23. 23.
    Liddle GW, Bledsoe T, Coppage WS: Aldosteronism but with negligible aldosterone secretion. Trans Am Assoc Physiol 1963, 76: 199–213.Google Scholar
  24. 24.
    Botero-Velez M, Curtis JJ, Warnock DG: Brief report: Liddle’s syndrome revisited: a disorder of sodium resorption in the distal tubule. N Engl J Med 1994, 330: 178–181.PubMedCrossRefGoogle Scholar
  25. 25.
    Shimkets RA, Warnock DG, Bositis CM, et al.: Liddle’s syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell 1994, 79: 407–414.PubMedCrossRefGoogle Scholar
  26. 26.
    Hansson JH, Nelson-Williams C, Suzuki H, et al.: Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome. Nat Genet 1995, 11: 76–82.PubMedCrossRefGoogle Scholar
  27. 27.
    Hansson JH, Schild L, Lu Y, et al.: A de novo missense mutation of the beta subunit of the epithelial sodium channel causes hypertension and Liddle syndrome, identifying a proline-rich segment critical for regulation of channel activity. Proc Natl Acad Sci USA 1995, 92: 11495–11499.PubMedCrossRefGoogle Scholar
  28. 28.
    Schild L, Canessa CM, Shimkets RA, et al.: A mutation in the epithelial sodium channel causing Liddle disease increases channel activity in the Xenopus laevis oocyte expression system. Proc Natl Acad Sci USA 1995, 92: 5699–5703.PubMedCrossRefGoogle Scholar
  29. 29.
    Lifton RP: Molecular genetics of human blood pressure variation. Science 1996, 272: 676–680.PubMedCrossRefGoogle Scholar
  30. 30.
    Jeunemaitre X, Soubrier F, Kotelevtsev YV, et al.: Molecular basis of human hypertension: role of angiotensinogen. Cell 1992, 71: 1–20.CrossRefGoogle Scholar
  31. 31.
    Ward K, Hata A, Jeunemaitre X, et al.: A molecular variant of angiotensinogen associated with preeclampsia. Nature Genet 1993, 4: 59–61.PubMedCrossRefGoogle Scholar
  32. 32.
    Inoue I, Nakajima T, Williams CS, et al.: A nucleotide substitution in the promoter of human angiotensinogen is associated with essential hypertension and affects basal transcription in vitro. J Clin Invest 1997, 99: 1786–1797.PubMedCrossRefGoogle Scholar
  33. 33.
    Casari G, Barlassina C, Cusi D, et al.: Association of the alpha-adducin locus with essential hypertension. Hypertension 1995, 25: 320–326.PubMedCrossRefGoogle Scholar
  34. 34.
    Cusi D, Barlassina T, Azzani T, et al.: Polymorphisms of alpha-adducin and salt sensitivity in patients with essential hypertension. Lancet 1997, 349: 1353–1357.PubMedCrossRefGoogle Scholar
  35. 35.
    Weder AB: Membrane sodium transport. In Hypertension Primer. The Essentials of High Blood Pressure. Edited by Izzo JL, Black HR. Dallas: American Heart Association; 1993: 36–37.Google Scholar
  36. 36.
    Blaustein M: Sodium ions, calcium ions, blood pressure regulation, and hypertension: a reassessment and a hypothesis. Am J Physiol 1977, 232: 065–073.Google Scholar
  37. 37.
    Haddy FJ: Potassium, Na+-K+ pump inhibitor and low-renin hypertension. Clin Invest Med 1987, 10: 547–554.PubMedGoogle Scholar
  38. 38.
    Canessa ML, Adragna NC, Solomon HS, et al.: Increased lithium-sodium countertransport in red cells of patients with essential hypertension. N Engl J Med 1980, 302: 772–776.PubMedCrossRefGoogle Scholar
  39. 39.
    Camussi A, Bianchi G: Genetics of essential hypertension: from the unimodal-bimodal controversy to molecular technology. Hypertension 1988, 12: 620–628.PubMedCrossRefGoogle Scholar
  40. 40.
    Canessa ML, Morgan K, Semplicini A: Genetic differences in lithium-sodium exchange and regulation of the sodium-hydrogen exchanger in essential hypertension. J Cardiovasc Pharmacol 1988, 12(suppl 3): 92–98.Google Scholar
  41. 41.
    Weder AB: Red-cell lithium-sodium countertransport and renal lithium clearance in hypertension. N Engl J Med 1986, 314: 198–201.PubMedCrossRefGoogle Scholar
  42. 42.
    Redgrave J, Canessa M, Gleason R, et al.: Red blood cell lithium-sodium countertransport in non-modulating essential hypertension. Hypertension 1989, 13: 721–726.PubMedCrossRefGoogle Scholar
  43. 43.
    Doria A, Fioretto P, Avogaro A, et al.: Insulin resistance is associated with high sodium-lithium countertransport in essential hypertension. Am J Physiol 1991, 261: E684–E691.PubMedGoogle Scholar
  44. 44.
    Lifton RP, Hunt SC, Williams RR, et al.: Exclusion of the Na+-H+ antiporter as a candidate gene in human essential hypertension. Hypertension 1991, 17: 8–14.PubMedCrossRefGoogle Scholar
  45. 45.
    Julius S, Jamerson K, Meija A, et al.: The association of borderline hypertension with target organ changes and higher coronary risk: Tecumseh Blood Pressure Study. JAMA 1990, 264: 354–358.PubMedCrossRefGoogle Scholar
  46. 46.
    Williams RR, Hunt SC, Hopkins PN, et al.: Familial dyslipidemic hypertension: evidence from 58 Utah families for a syndrome present in approximately 12% of patients with essential hypertension. JAMA 1988, 259: 3579–3586.PubMedCrossRefGoogle Scholar
  47. 47.
    Williams RR, Hopkins PN, Hunt SC, et al.: Population-based frequency of dyslipidemic syndromes in coronary-prone families in Utah. Arch Intern Med 1990, 150: 582–588.PubMedCrossRefGoogle Scholar
  48. 48.
    Wallin G, Kunimoto MM, Sellgren J: Possible genetic influence on the strength of human muscle nerve sympathetic activity at rest. Hypertension 1993, 22: 282–284.PubMedCrossRefGoogle Scholar
  49. 49.
    Williams GH, Dluhy RG, Lifton RP, et al.: Non-modulation as an intermediate phenotype in essential hypertension. Hypertension 1992, 20: 788–796.PubMedCrossRefGoogle Scholar
  50. 50.
    Rose G: Population distributions of risk and disease. Nutr Metab Cardiovasc Dis 1991, 1: 37–40.Google Scholar
  51. 51.
    INTERSALT Cooperative Research Group: INTERSALT: an international study of electrolyte excretion and blood pressure: results for 24 hour urinary sodium and potassium excretion. BMJ 1988, 297: 319–328.CrossRefGoogle Scholar
  52. 52.
    Rose G, Day S: The population mean predicts the number of deviant individuals. BMJ 1990, 301: 1031–1034.PubMedCrossRefGoogle Scholar
  53. 53.
    Denton D, Weisinger R, Mundy NI, et al.: The effect of increased salt intake on blood pressure of chimpanzees. Nat Med 1995, 1: 1009–1016.PubMedCrossRefGoogle Scholar
  54. 54.
    McCarron DA, Morris CD, Henry HJ, et al.: Blood pressure and nutrient intake in the United States. Science 1984, 224: 1392–1398.PubMedCrossRefGoogle Scholar
  55. 55.
    Witteman JCM, Willett WC, Stampfer MJ, et al.: A prospective study of nutritional factors and hypertension among US women. Circulation 1989, 80: 1320–1327.PubMedCrossRefGoogle Scholar
  56. 56.
    Resnick LM, Gupta RK, Bhargava KK: Cellular electrolytes in hypertension, diabetes, and obesity: a nuclear magnetic resonance spectroscopic study. Hypertension 1991, 17: 951–957.PubMedCrossRefGoogle Scholar
  57. 57.
    Resnick LM: Calciotropic hormones in human and experimental hypertension. Am J Hypertens 1990, 3(suppl): 171–178.Google Scholar
  58. 58.
    Gruchow HW, Sobocinski KA, Barboriak JJ: Calcium intake and the relationship of dietary sodium and potassium to blood pressure. Am J Clin Nutr 1988, 48: 1463–1470.PubMedGoogle Scholar
  59. 59.
    Criqui MH, Langer RD, Reed DM: Dietary alcohol, calcium, and potassium: independent and combined effects on blood pressure. Circulation 1989, 80: 609–614.PubMedCrossRefGoogle Scholar
  60. 60.
    Green LW: Manual for scoring socioeconomic status for research on health behavior. Public Health Rep 1970, 85: 815–827.PubMedCrossRefGoogle Scholar
  61. 61.
    Klag MJ, Whelton PK, Coresh J, et al.: The association of skin color with blood pressure in US blacks with low socioeconomic status. JAMA 1991, 265: 599–602.PubMedCrossRefGoogle Scholar
  62. 62.
    Simopoulos AP: Dietary risk factors for hypertension. Comp Ther 1992, 18: 26–30.Google Scholar
  63. 63.
    Eaton SB, Konner M, Shostak M: Stone agers in the fast lane: chronic degenerative diseases in evolutionary perspective. Am J Med 1988, 84: 739–749.PubMedCrossRefGoogle Scholar
  64. 64.
    Stamler J, Rose G, Elliott P, et al.: Findings of the international cooperative INTERSALT study. Hypertension 1991, 17(suppl I): 9–15.CrossRefGoogle Scholar
  65. 65.
    Wilson TW, Grim CE: Biohistory of slavery and blood pressure differences in blacks today: a hypothesis. Hypertension 1991, 17(suppl I): 122–128.CrossRefGoogle Scholar
  66. 66.
    Jackson FLC: An evolutionary perspective on salt, hypertension, and human genetic variability. Hypertension 1991, 17(suppl I): 129–132.CrossRefGoogle Scholar
  67. 67.
    Grobbee DE: Methodology of sodium sensitivity assessment: the example of age and sex. Hypertension 1991, 17(suppl I): 109–114.CrossRefGoogle Scholar
  68. 68.
    Grobbee DE, Hofman A: Does sodium restriction lower blood pressure? BMJ 1986, 293: 27–29.PubMedCrossRefGoogle Scholar
  69. 69.
    Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure: The fifth report of the Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure (JNC V). Arch Intern Med 1993, 153: 154–183.CrossRefGoogle Scholar
  70. 70.
    Midgley JP, Matthew AG, Greenwood CMT, Logan AG: Effect of reduced dietary sodium on blood pressure: a meta-analysis of randomized controlled trials. JAMA 1996, 275: 1590–1597.PubMedCrossRefGoogle Scholar
  71. 71.
    Hollenberg NK, Martinez G, McCullough M, et al.: Aging, acculturation, salt intake, and hypertension in the Kuna of Panama. Hypertension 1997, 171–176.Google Scholar
  72. 72.
    Krishna GG, Miller E, Kapoor S: Increased blood pressure during potassium depletion in normotensive men. N Engl J Med 1989, 320: 1177–1182.PubMedCrossRefGoogle Scholar
  73. 73.
    Appel LJ, Moore TJ, Obarzanek E, et al.: A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med 1997, 336: 1117–1124.PubMedCrossRefGoogle Scholar
  74. 74.
    Grobbee DE, Waal-Manning HJ: The role of calcium supplementation in the treatment of hypertension: current evidence. Drugs 1990, 39: 7–18.PubMedCrossRefGoogle Scholar
  75. 75.
    Barker DJP, Bull AR, Osmund C, et al.: Fetal and placental size and risk of hypertension in adult life. BMJ 1990, 301: 259–262.PubMedCrossRefGoogle Scholar
  76. 76.
    Whincup PH, Cook DG, Shaper AG: Early influences on blood pressure: a study of children aged 5–7 years. BMJ 1989, 299: 587–591.PubMedCrossRefGoogle Scholar
  77. 77.
    Lauer RM, Anderson AR, Beaglehole R, et al.: Factors related to tracking of blood pressure in children: U.S. National Center for Health Statistics Health Examination Surveys Cycles II and III. Hypertension 1984, 6: 307–314.PubMedCrossRefGoogle Scholar
  78. 78.
    Krieger DR, Landsberg L: Obesity and hypertension. In Hypertension: Pathophysiology, Diagnosis, and Management. Edited by Laragh JH, Brenner BM. New York: Raven Press, Ltd; 1990: 1741–1757.Google Scholar
  79. 79.
    Kaplan NM: The deadly quartet: upper-body obesity, glucose intolerance, hypertriglyceridemia, and hypertension. Arch Intern Med 1989, 149: 1514–1520.PubMedCrossRefGoogle Scholar
  80. 80.
    Rocchini AP, Key J, Bondie D, et al.: The effect of weight loss on the sensitivity of blood pressure to sodium in obese adolescents. N Engl J Med 1989, 321: 580–585.PubMedCrossRefGoogle Scholar
  81. 81.
    Stevens VJ, Corrigan SA, Obarzanek E, et al.: Weight loss intervention in phase 1 of the Trials of Hypertension Prevention. Arch Intern Med 1993, 153: 849–858.PubMedCrossRefGoogle Scholar
  82. 82.
    Light KC, Koepke JP, Obrist PA, et al.: Psychological stress induces sodium and fluid retention in men at high risk for hypertension. Science 1983, 220: 429–431.PubMedCrossRefGoogle Scholar
  83. 83.
    Evans WE, Relling MV: Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999, 286: 487–491.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Alan B. Weder

There are no affiliations available

Personalised recommendations