Baryon and Lepton Non-Conservation, Majorana Neutrinos and Neutron (\( N \leftrightarrow \bar N \)) Oscillations

  • Rabindra N. Mohapatra
Part of the Lie Groups: History, Frontiers and Applications book series (LGR, volume 11)


Baryon and lepton number violating processes are discussed as a tool to study the existence of intermediate mass scales below 1015 GeV. We emphasize that particularly interesting in this connection are ΔB = 2 processes that cause \( N \leftrightarrow \bar N \) oscillations and N1 + N2 → pions. Detailed phenomenology of \( N \leftrightarrow \bar N \) oscillation is presented. A partial unification model where B- and L- breakdown arises from spontaneous breakdown is reviewed and its implications are presented. Implications of grand unified models based on SU(5) and SO(10) for such processes are noted.


Higgs Boson Yukawa Coupling Neutrino Mass Proton Decay Majorana Neutrino 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a review of the recent developments on the subject, see J.C. Pati, Topics in Quantum Field Theory, J.A. de Azcárraga (ed.), pp. 221–334. See also J.C. Taylor, Gauge Theories of Weak Interactions, Academic Press, New York, 1976.Google Scholar
  2. 2.
    For a review of the subject, see M. Goldhaber, Unification of Elementary Forces and Gauge Theories, D. Cline and F. Mills (eds.), Academic Press, New York, 1977, p. 531; H.S. Gürr, W.R. Kropp, F. Reines, and B. Meyer, Phys. Rev. 158, 1321 (1967); J. Learned, F. Reines, and A. Soni, Phys. Rev. Lett. 43, 907 (1979).Google Scholar
  3. 3.
    T.D. Lee and C.N. Yang, Phys. Rev. 98, 1501 (1955). See also A. Pais, Rockefeller Preprint C00-2232B-18 (1973).ADSCrossRefGoogle Scholar
  4. 4.
    J.C. Pati and A. Salam, Phys. Rev. D8, 1240 (1973); Phys. Rev. Lett. 31, 661 (1973); Phys. Rev. D10, 275 (1974).ADSGoogle Scholar
  5. 5.
    H. Georgi and S.L. Glashow, Phys. Rev. Lett. 32, 438 (1974).ADSCrossRefGoogle Scholar
  6. 6.
    A. Sakharov, Zh. Exp. Theor. Fiz. Pisma Red. 5, 32 (1967).Google Scholar
  7. 7.
    H. Georgi, H. Quinn, and S. Weinberg, Phys. Rev. Lett. 33, 451 (1974).ADSCrossRefGoogle Scholar
  8. 8.
    The present status of various experimental searches for proton decay has been reviewed in reports at this workshop by L. Sulak, D. Winn, and R. Steinberg.Google Scholar
  9. 9.
    S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979); F. Wilczek and A. Zee, Phys. Rev. Lett. 43, 1571 (1979).ADSCrossRefGoogle Scholar
  10. 10.
    R.N. Mohapatra and R.E. Marshak, Phys. Rev. Lett. 44, 1316 (1980); VPI-HEP-80/2, to be published, Proc. Orbis Scientiae, 1980.ADSCrossRefGoogle Scholar
  11. 11.
    F. Wilczek and A. Zee, Phys. Lett. B (to appear).Google Scholar
  12. 12.
    S.L. Glashow, Future of Elementary Particle Physics, HUTP-79/A029 and HUTP-79/A059.Google Scholar
  13. 13.
    J.C. Pati and A. Salam, Phys. Rev. D10, 275 (1974); R.N. Mohapatra and J.C. Pati, Phys. Rev. D11, 566, 2558 (1975); G. Senjanovic and R.N. Mohapatra, Phys. Rev. D12, 1522 (1975). For a review and other references to the complete literature in the field to 1977, see R.N. Mohapatra, New Frontiers in High Energy Physics, A. Perlmutter and L. Scott (eds.), Plenum, 1978.ADSGoogle Scholar
  14. 14.
    I was informed at the workshop of two papers, which generalize the analysis of Refs. 10, 11, and 12 to catalogue a whole list of such operators. S. Weinberg, HUTP-80/A023 (1980); A. Weldon and A. Zee, University of Penn. Preprint (1980).Google Scholar
  15. 15.
    G. Feinberg, M. Goldhaber, and G. Steigman, Phys. Rev. D18, 1602 (1979).ADSGoogle Scholar
  16. 16.
    R. Wilson, MIT Proposal (1979).Google Scholar
  17. 17.
    R.E. Marshak and R.N. Mohapatra, Phys. Lett. B (to appear). See also A. Davidson, Phys. Rev. D20, 776 (1979).Google Scholar
  18. 18.
    H. Williams, talk at the Weak Interaction Workshop, Virginia Polytechnic Institute, 1979.Google Scholar
  19. 19.
    R.N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980).ADSCrossRefGoogle Scholar
  20. 21.
    A. Halperin, P. Minkowski, H. Primakoff, and S.P. Rosen, Phys. Rev. D13, 2567 (1976).ADSGoogle Scholar
  21. 22.
    The experimental situation has been surveyed by E. Fiorini, Rev. Nuovo Cim. 2, 1 (1971) and Neutrino’ 77, M. Markov et al. (ed.), p. 315.MathSciNetADSCrossRefGoogle Scholar
  22. 23.
    D. Dicus, E. Kolb, V. Teplitz, and R.V. Wagoner, Phys. Rev. D17, 1529 (1978); D18, 1829 (1978).ADSGoogle Scholar
  23. 24.
    R. Davis, Proc. Int. Conf. on Radio Isotopes, Pergamon, 1958.Google Scholar
  24. 25.
    L.N. Chang and N.P. Chang, Phys. Lett. B (to appear).Google Scholar
  25. 26.
    A detailed investigation of this question will be the subject of a forthcoming publication by R.N. Mohapatra and J.C. Pati (to appear).Google Scholar
  26. 27.
    See, for example, P. Frampton, S. Nandi, and J. Scanio, Phys. Lett. 85B, 225 (1979); H. Georgi and C. Jarlskog, HUTP-79/A026 (1979); R.N. Mohapatra and D. Wyler, Phys. Lett. 89B, 181 (1980); S. Nandi and K. Tanaka, Phys. Lett. B (to appear).ADSGoogle Scholar
  27. 28.
    G. Senjanovic, private communication.Google Scholar
  28. 29.
    J.C. Pati, see Ref. 1.Google Scholar

Copyright information

© Robert Hermann 1980

Authors and Affiliations

  • Rabindra N. Mohapatra
    • 1
  1. 1.Department of PhysicsCity College, CUNYNew YorkUSA

Personalised recommendations