Advertisement

Expectations for Baryon and Lepton Nonconservation

  • Steven Weinberg
Part of the Lie Groups: History, Frontiers and Applications book series (LGR, volume 11)

Abstract

Are baryon and lepton conservation actually violated in nature? At this moment, we do not know. Nevertheless, it seems a good idea to try to anticipate the details of baryon or lepton nonconserving processes, so that we can at least know what to look for, and what may be learned if it is found. In this talk, I will outline the expected properties of baryon and lepton non-conserving processes, taking as a guide just the strong and electroweak SU(3) × SU(2) × u(l) gauge symmetries and some plausible dimensional analysis. I will also describe a recent calculation of superheavy particle masses, and will have a few comments on the constraints imposed by cosmology on the possible modes of nucleon decay. But before getting into details, I would like to try to set the stage, by describing how our views of baryon and lepton conservation have been shaped by changes in our views about symmetries in general.

Keywords

Gauge Symmetry Neutrino Mass Lepton Number Renormalization Group Equation Neutrino Mass Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. D. Lee and C. N. Yang, Phys. Rev. 98, 101 (1955). It is of course possible that baryon and/or lepton conservation could be exact gauge symmetries, but be spontaneously broken. However, in order for baryon or lepton conservation then to survive as exact global symmetries, it would still be necessary for the Lagrangian also to have an exact global symmetry, which could combine with the gauge symmetry, in the manner described by G.’t Hooft, Nucl. Phys. B35, 167 (1971).CrossRefGoogle Scholar
  2. 2.
    S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979); F. Wilczek and A. Zee, Phys. Rev. Lett. 43, 1571 (1979). Renormalization effects are considered by L. F. Abbott and M. B. Wise, preprint SLAC-PUB-2487.ADSCrossRefGoogle Scholar
  3. 3.
    M. Machacek, Nucl. Phys. B159, 37 (1979).ADSCrossRefGoogle Scholar
  4. 4.
    The proton lifetime was estimated in this way (except for the dependence on e) by H. Georgi, H. Quinn, and S. Weinberg, Phys. Rev. Lett. 33, 451 (1974).ADSCrossRefGoogle Scholar
  5. 5.
    A. Buras, J. Ellis, M. K. Gaillard, and D. V. Nanopoulos, Nucl. Phys. B135, 66 (1978); C. Jarlskog and F. J. Yndurain, Nucl. Phys. B149, 29 (1979); M. Machacek, Ref. 3; A. Din, G. Girardi, and P. Sorba, Phys. Lett. 91B, 77 (1980); J. Ellis, M. K. Gaillard, D. V. Nanopoulos, and S. Rudaz, preprint LAPP-TH-14; M. B. Gavela, A. Le Yaouanc, L. Oliver, O. Pène, and J. C. Raynal, preprint LPTHE80/6.ADSCrossRefGoogle Scholar
  6. 6.
    The first experiment designed to set a limit on the proton lifetime was that of F. Reines, C. L. Cowan, Jr., and M. Goldhaber, Phys. Rev. 96, 1157 (1954). For an early theoretical discussion, see G. Feinberg and M. Goldhaber, Proc. Nat. Acad. Sci. 45, 1301 (1958). The lower bound of 1030 years is set by the experiment of F. Reines and M. Crouch, Phys. Rev. Lett. 32, 493 (1974); J. Learned, F. Reines, and A. Soni, Phys. Rev. Lett. 43, 907 (1979).ADSCrossRefGoogle Scholar
  7. 7.
    H. Georgi, et al., Ref. 4. Also see A. Buras, et al., Ref. 5.Google Scholar
  8. 8.
    Leading grand unified models include those of J. C. Pati and A. Salam, Phys. Rev. D8, 1240 (1973); Phys. Rev. Lett. 31, 661 (1973); Phys. Rev. D 10, 275 (1974); S. Glashow and H. Georgi, Phys. Rev. Lett. 32 438 (1974); H. Georgi, in Particles and Fields — 1974, ed. by C. E. Carlson, A.I.P. Conference Proceedings No. 23 (American Institute of Physics, New York, 1975); H. Fritzsch and P. Minkowski, Ann. Phys. (N.Y.) 93, 193 (1975); H. Georgi and D. V. Nanopoulos, Phys. Lett. 82B, 392 (1979); F. Gürsey, P. Ramond, and P. Sikivie, Phys. Rev. Lett. 36, 775 (1976); F. Gürsey and P. Sikivie, Phys. Rev. Lett. 36, 775 (1976); P. Ramond, Nucl. Phys. B110, 214 (1976); etc. As proposed by Pati and Salam, these models involve baryon and lepton nonconservation because they have quarks and leptons in the same multiplets.ADSGoogle Scholar
  9. 9.
    D. Ross, Nucl. Phys. B140, 1 (1978); W. J. Marciano, Phys. Rev. D 20, 274 (1979); T. Goldman and D. Ross, preprint CALT 68-704 (1979).ADSCrossRefGoogle Scholar
  10. 10.
    T. Appelquist and J. Carazzone, Phys. Rev. D 11, 2856 (1975).ADSCrossRefGoogle Scholar
  11. 11.
    S. Weinberg, Phys. Lett. 91B, 51 (1980). Also see N. P. Chang, A. Das, and J. Perez-Mercader, CCNY preprint; P. Binetruy and T. Schücker, CERN preprint; M. Yoshimura, preprints KEK-TH 11 and KEK-79-29.ADSGoogle Scholar
  12. 12.
    There are problems in giving a general algorithm for the construction of the effective Lagrangian beyond the one-loop order; see B. Ovrut and H. J. Schnitzer, Brandeis preprint; Y. Kazama and Y. P. Yao, preprint UM HE 79-40; and T. Hagiwara and N. Nakazawa, preprint HUTP-80/A012. Fortunately we do not need to carry this part of the calculation beyond the one-loop order.Google Scholar
  13. 13.
    G. ’t Hooft, Nucl. Phys. B61, 454 (1973), B62, 444 (1973). This prescription is used here in the modified version of W. A. Bardeen, A. J. Buras, D. W. Duke, and T. Muta, Phys. Rev. D18, 3998 (1978). For an alternative prescription with similar properties, see S. Weinberg, Phys. Rev. 8, 3497 (1973).Google Scholar
  14. 14.
    S. Weinberg, in General Relativity; an Einstein Centenary, ed. by S. Hawking and W. Israel (Cambridge University Press, 1979) p. 817.Google Scholar
  15. 15.
    B. S. de Witt, Phys. Rev. 162, 1195, 1239 (1967); Phys. Rep. 19C, 295 (1975); G.’ t Hooft and M. Veltman, Ann. Inst. H. Poincaré 20, 69 (1974), S. J. Honerkamp, Nucl. Phys. B48, 269 (1972); R. Kallosh, Nucl. Phys. B78, 293 (1974); M. T. Grisaru, P. van Nieuwenhuizen, and C. C. Wu, Phys. Rev. D12, 3203 (1975).ADSCrossRefGoogle Scholar
  16. 16.
    L. Hall, preprint HUTP-80/A024.Google Scholar
  17. 17.
    S. Weinberg, Ref. 2.Google Scholar
  18. 18.
    M. Gell-Mann, P. Ramond, and R. Slansky, (unpublished); H. Georgi and D. V. Nanopoulos, Phys. Lett. 82B, 392 (1979), Nucl. Phys. B155, 52 (1979); T. Yanagida, Proceedings of the Workshop on The Unified Theory and The Baryon Number in The Universe (National Laboratory for High Energy Physics —s KEK, 1979).ADSGoogle Scholar
  19. 19.
    S. Weinberg, Phys. Rev. D13, 974 (1976), D19, 1277 (1979); L. Susskind, Phys. Rev. D 20, 2619 (1979). Also see E. Eichten and K. Lane, Phys. Lett. 90B, 125 (1980); S. Dimopoulos and L. Susskind, Nucl. Phys. B155, 237 (1979), Columbia-Stanford preprint (1979); E. Farhi and L. Susskind, SLAC preprint (1979); E. Eichten, K. Lane, and J. Preskill, preprint HUTP-80/A016; P. H. Frampton, Phys. Rev. Lett. 43, 1912 (1979); S. Dimopoulos, preprint ITP-649 (1979); M. Peskin, Saclay preprint; J. Preskill, preprint HUTP-80/A033; M. A. Bég, H. D. Politzer, and P. Ramond, Rockefeller preprint; P. Sikivie, L. Susskind, M. Voloshin and V. Zakharov, Stanford preprint; W. J. Marciano, Rockefeller preprint; Y. Chikashige, G. Gelmini, R. D. Peccei, and M. Roncadelli, Munich preprint; etc.ADSGoogle Scholar
  20. 20.
    S. Weinberg, Phys. Rev. Lett. 29, 388 (1972).ADSCrossRefGoogle Scholar
  21. 21.
    S. Weinberg, Phys. Rev. Lett. 29, 1698 (1972).ADSCrossRefGoogle Scholar
  22. 22.
    E. Witten, Phys. Lett. 91B, 81 (1980).MathSciNetADSGoogle Scholar
  23. 23.
    F. Wilczek and A. Zee, preprint UPR-0135T; R. N. Mohapatra and R. E. Marshak, preprints VPI-HEP-80/1, 2; D. V. Nanopoulos, D. Sutherland, and A. Yildiz, Lett. Nuovo Cimento 28, 205 (1980); S. Glashow (unpublished); H. Georgi (unpublished); etc.Google Scholar
  24. 24.
    S. Weinberg, preprint HUTP-80/A023.Google Scholar
  25. 25.
    H. Weldon and A. Zee, to be published.Google Scholar
  26. 26.
    For a review, see e.g. S. Weinberg, Phys. Rev. 181, 1893 (1969). The use of this formalism in analyzing baryon nonconserving operators was suggested to me by E. Witten.ADSCrossRefGoogle Scholar
  27. 27.
    J. D. Bjorken and S. Brodsky, Phys. Rev. D1, 1416 (1970).ADSGoogle Scholar
  28. 28.
    S. Weinberg, Phys. Rev. Lett. 42, 850 (1979), and Ref. 2.ADSCrossRefGoogle Scholar
  29. 29.
    M. Yoshimura, Phys. Rev. Lett. 41, 281 (1978), 42, 746(E) (1979), and to be published; S. Dimopoulos and L. Susskind, Phys. Rev. D18, 4500 (1978), Phys. Lett. 81B, 416 (1979); A. Yu. Ignatiev, N. V. Krasnikov, V. A. Kuzmin, and A. N. Tavkhelidze, Phys. Lett. 76B, 436 (1978); B. Toussaint, S. B. Treiman, F. Wilczek, and A. Zee, Phys. Rev. D19, 1036 (1979); J. Ellis, M. K. Gaillard, and D. V. Nanopoulos, Phys. Lett. 80B, 360 (1979), 82B, 464(e) (1979); S. Weinberg, Ref. 28; N. J. Papastamatiou and L. Parker, Phys. Rev. D19, 2283 (1979); D. V. Nanopoulos and S. Weinberg, Phys. Rev. D20, 2484 (1979); etc. The existence of a cosmic baryon excess prompted early discussions of possible baryon nonconservation; see S. Weinberg in Lectures on Particles and Fields, ed. by S. Deser and K. Ford (Prentice-Hall, Englewood Cliffs, N.J., 1964), p. 482; A. D. Sakharov, Zh. Eksp. Teor. Fiz. Pis’ma 5, 32 (1967) [JETP Lett. 5, 24 (1967)].ADSCrossRefGoogle Scholar
  30. 30.
    J. Pati, private communication.Google Scholar
  31. 31.
    V. Gribov and B. Pontecorvo, Phys. Lett. 28B, 493 (1969); J. N. Bahcall and S. C. Frautschi, Phys. Lett. 29B, 623 (1969). For a general review of neutrino masses, see W. J. Marciano, preprint DOE/EY/2232B-207.ADSGoogle Scholar

Copyright information

© Robert Hermann 1980

Authors and Affiliations

  • Steven Weinberg
    • 1
    • 2
  1. 1.Lyman Laboratory of PhysicsHarvard UniversityUSA
  2. 2.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA

Personalised recommendations