Quark-Lepton Unification and Proton Decay

  • Jogesh C. Pati
  • Abdus Salam
Part of the Lie Groups: History, Frontiers and Applications book series (LGR, volume 11)


Complexions for proton decay arising within a maximal symmetry for quarklepton unification, which leads to spontaneous rather than intrinsic violations of B, L, and F, are considered. Four major modes satisfying ΔB = -1 and ΔF = 0, -2, -4, and -6 are noted. It is stressed that some of these modes can coexist in accord with allowed solutions for renormalization group equations for coupling constants for a class of unifying symmetries. None of these remarks is dependent on the nature of quark charges. It is noted that if quarks and leptons are made of constituent preons, the preon binding is likely to be magnetic.


Lepton Number Proton Decay Renormalization Group Equation Spontaneous Symmetry Breaking Fermion Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.C. Pati and Abdus Salam, “Lepton hadron unification” (unpublished), reported by J.D. Bjorken in the Proceedings of the 15th High Energy Physios Conference held at Batavia, Vol. 2, p. 304, September, 1972; J.C. Pati and Abdus Salam, Phys. Rev. D8, 1240 (1973).Google Scholar
  2. 2.
    J.C. Pati and Abdus Salam, Phys. Rev. Lett. 31, 661 (1973); Phys. Rev. D10, 275 (1974); Phys. Lett. 58B, 333 (1975).ADSCrossRefGoogle Scholar
  3. 3.
    H. Georgi and S.L. Glashow, Phys. Rev. Lett. 32, 438 (1974).ADSCrossRefGoogle Scholar
  4. 4.
    J.C. Pati, Proc. Seoul Symp. 1978.Google Scholar
  5. 5.
    T. Goldman and D. Ross, Caltech Preprint (1979).Google Scholar
  6. 6.
    H. Georgi, H. Quinn, and S. Weinberg, Phys. Rev. Lett. 33, 451 (1974).ADSCrossRefGoogle Scholar
  7. 7.
    See L. Sulak, Proceedings of the Erice Workshop (March 1980) and M. Goldhaber, Proceedings of the New Hampshire Workshop (April 1980). The Harvard-Purdue-Wisconsin experiment is the other parallel experiment of comparable magnitude in progress (private communications, D. Cline and C. Rubbia).Google Scholar
  8. 8.
    F. Reines and M.F. Crouch, Phys. Rev. Lett. 32, 493 (1974).ADSCrossRefGoogle Scholar
  9. 9.
    J.C. Pati, Abdus Salam, and J. Strathdee, Il Nuovo Cimento 26A, 77 (1975); J.C. Pati, Proc. Second Orbis Scientiae, Coral Gables, Fla., p. 253, Jan. 1975; J.C. Pati, S. Sakakibara and Abdus Salam, ICTP, Trieste, Preprint IC/75/93, unpublished.ADSGoogle Scholar
  10. 10.
    V. Elias, J.C. Pati, and Abdus Salam, Phys. Rev. Lett. 40, 920 (1978).ADSCrossRefGoogle Scholar
  11. 11.
    See M. Geli-Mann, P. Ramond, and R. Slansky, Rev. Mod. Phys. 50, 721 (1978); P. Langacker, G. Segre, and H.A. Weldon, Phys. Lett. 73B, 87 (1978).ADSCrossRefGoogle Scholar
  12. 12.
    H. Fritzsch and P. Minkowski, Ann. Phys. (NY) 93, 193 (1975); H. Georgi, Proc. Williamsburg Conf., 1974.MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    See, for example, R.N. Mohapatra and G. Senjanovic, Phys. Rev. D20, 3390 (1979).ADSGoogle Scholar
  14. 14.
    J.C. Pati and Abdus Salam, Phys. Rev. D10, 275 (1974); R.N. Mohapatra and J.C. Pati, Phys. Rev. D11, 566 (1975); G. Senjanovic and R.N. Mohapatra, Phys. Rev. D12, 1502 (1975).ADSGoogle Scholar
  15. 15.
    J.C. Pati and Abdus Salam, unpublished work (1975); J.C. Pati, Proc. Scottish Univ. Summer School, 1976.Google Scholar
  16. 16.
    J.C. Pati and Abdus Salam, forthcoming preprint IC/80/72, ICTP, Trieste.Google Scholar
  17. 17.
    F. Gursey, P. Ramond, and P. Sikivie, Phys. Lett. 60B, 177 (1976).ADSGoogle Scholar
  18. 18.
    B. Deo, J.C. Pati, S. Rajpoot, and Abdus Salam, Preprint in preparation; Abdus Salam, Proc. EPS Conf., Geneva, 1979.Google Scholar
  19. 19.
    S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979); F. Wilczek and A. Zee, Phys. Rev. Lett. 43, 1571 (1979).ADSCrossRefGoogle Scholar
  20. 20.
    See F. Wilczek and A. Zee, Preprint UPR-0135 T; R.N. Mohapatra and R. Marshak, Preprint VPI-HEP-80/1, 2; S. Glashow (unpublished).Google Scholar
  21. 21.
    S. Weinberg, Preprint HUTP-80/A023; H.A. Weldon and A. Zee, Preprint, 1980.Google Scholar
  22. 22.
    See Ref. 15.Google Scholar
  23. 23.
    V. Elias and S. Rajpoot, ICTP, Trieste, Preprint IC/78/159.Google Scholar
  24. 24.
    B. Deo, J.C. Pati, S. Rajpoot, and Abdus Salam, manuscript in preparation. For some initial ingredients of this work, see Abdus Salam, Proc. EPS Conf., Geneva, 1979.Google Scholar
  25. 25.
    J.C. Pati, University of Maryland Preprint TR 80-095, April, 1980; “Magnetism as the origin of preon binding”, to be published.Google Scholar
  26. 26.
    J.C. Pati and Abdus Salam, Phys. Rev. D10, 275 (1974); Proc. EPS Int. Conf. on High Energy Physics, Palermo, June, 1975, p. 171 (ed. A. Zichichi); J.C. Pati, Abdus Salam, and J. Strathdee, Phys. Lett. 59B, 265 (1975).ADSGoogle Scholar
  27. 27.
    Several authors have worked on composite models of quarks and leptons with an emphasis on classification rather than gauge unification of forces. K. Matumoto, Progr. Theor. Phys. 52, 1973 (1974); O.W. Greenberg, Phys. Rev. Lett. 35, 1120 (1975); H.J. Lipkin, Proc. EPS Conf., Palermo, June 1975, p. 609 (ed. A. Zichichi); J.D. Bjorken (unpublished); C.H. Woo and W. Krolikowski (unpublished); E. Nowak, J. Sucher, and C.H. Woo, Phys. Rev. D16, 2874 (1977); H. Terezawa, Preprint, Univ. of Tokyo, September 1979, INS-Rep-351 (a list of other references may be found here). H. Harari, Phys. Lett. 86B, 83 (1979) and M.A. Shupe, Phys. Lett. 86B, 78 (1979) have recently proposed the most economical model of all, but with a number of dynamical assumptions, whose bases are not clear.ADSCrossRefGoogle Scholar
  28. 28.
    P.A.M. Dirac, Proc. Roy. Soo. (London) A133, 60 (1931); Phys. Rev. 74, 817 (1948).ADSCrossRefGoogle Scholar
  29. 29.
    J. Schwinger, Phys. Rev. 144, 1087 (1966); D12, 3105 (1975); Scienoe 165, 757 (1969); D. Zwanziger, Phys. Rev. 176, 1489 (1968); R.A. Brandt, F. Neri, and D. Zwanziger, Phys. Rev. Lett. 40, 147 (1978).MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    G. ’t Hooft, Nucl. Phys. B79, 276 (1974); A.M. Palyakov, JETP Lett. 20, 194 (1974).MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    C. Montonen and D. Olive, Phys. Lett. B72, 117 (1977); P. Goddard, J. Buyts, and D. Olive, Nucl. Phys. B125, 1 (1977).ADSGoogle Scholar
  32. 32.
    The formalism may follow that of D. Zwanziger, Phys. Rev. D3, 880 (1971).MathSciNetADSGoogle Scholar
  33. 33.
    M. Veltman (unpublished); See J. Ellis, M.K. Gaillard, L. Maiani, and B. Zumino, Preprint LAPP-TH-15, CERN Th 2841.Google Scholar
  34. 34.
    In such a picture there would be a natural reason why electric charge may be absolutely conserved and correspondingly the photon may remain truly massless, despite spontaneous symmetry breaking, since the photon is distinguished by the fact that it is responsible for the very existence of the composite Higgs particles which trigger spontaneous symmetry breaking.Google Scholar
  35. 35.
    The arguments presented here are independent of the detailed structure of the preon model. If the suggestions of H. Harari (Phys. Lett. 86B, 83 (1979)) and M. Shupe (Phys. Lett. 86B, 87 (1979)) for generating a “degenerate” color degree of freedom can be sustained dynamically, it would be an attractive economical picture. The arguments presented here would suggest that such an economical set of preons (or pre-preons) must carry magnetic charges and that their binding must owe its origin to such charges.ADSGoogle Scholar

Copyright information

© Robert Hermann 1980

Authors and Affiliations

  • Jogesh C. Pati
    • 1
    • 2
  • Abdus Salam
    • 1
    • 3
  1. 1.International Centre for Theoretical PhysicsTriesteItaly
  2. 2.Department of PhysicsUniversity of MarylandCollege ParkUSA
  3. 3.Imperial CollegeLondonEngland

Personalised recommendations