Polymer Modeling Applications of Symbolic Computation

  • John T. Bendler
  • Michael F. Shlesinger


Statistical models are employed to describe (a) the geometry and (b) kinetics of local conformational backbone motions in glassy polymers. First, 13 the chemical shift anisotropy (CSA) tensor line shape of an aromatic C is modeled using a double-well potential with temperature-dependent flips and oscillations modulating the experimental principal components. MACSYMA is used to perform matrix multiplications and subsequent Boltzmann averages. Second, bond-defect diffusion models lead to Levy-stable laws for conformer orientational survival probability densities. MACSYMA assists in the analysis and resummation of series expansions of stable laws needed for data processing.


Glassy Polymer Chemical Shift Anisotropy Thermal Average Defect Diffusion Chemical Shift Anisotropy Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Kuhn, Kolloid Z., 76, 258 (1936).CrossRefGoogle Scholar
  2. 2.
    P.G. de Gennes, “Scaling Concepts in Polymer Physics”, (Cornell University Press, Ithaca, 1979), Chapter II.Google Scholar
  3. 3.
    M.F. Shlesinger and E.W. Montroll, Proc. Natl. Acad. Sci., 81, 1280 (1984).MathSciNetCrossRefGoogle Scholar
  4. 4.
    S.H. Glarum, J. Chem. Phys., 33, 1371 (1960).MathSciNetCrossRefGoogle Scholar
  5. 5.
    B.B. Mandelbrot, “The Fractal Geometry of Nature”, (Freeman, New York, 1982).MATHGoogle Scholar
  6. 6.
    W. Feller, “An Introduction to Probability Theory and Its Applications”, (John Wiley, New York, 1966), Volume II.MATHGoogle Scholar
  7. 7.
    E.W. Montroll and J.T. Bendler, J. Statistical Physics, 34, 129 (1984).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    M. Dishon, G.H. Weiss, and J.T. Bendler, J. Res. Natl. Bur. Stand., (In Press).Google Scholar
  9. 9.
    P.T. Inglefield, A.A. Jones, R.P. Lubianez, and J.F. O’Gara, Macromolecnles, 14, 288 (1981).CrossRefGoogle Scholar
  10. 10.
    A.A. Jones, J.F. O’Gara, P.T. Inglefield, J.T. Bendler, A.F. Yee, and K.L. Ngai, Macromolecnles, 16, 658 (1983).CrossRefGoogle Scholar
  11. 11.
    P.T. Inglefield, R.M. Amici, J.F. O’Gara, C.C. Hung, and A.A. Jones, Macromolecnles, 16, 1552 (1983).CrossRefGoogle Scholar
  12. 12.
    J.F. O’Gara, A.A. Jones, C.C. Hung, and P.T. Inglefield, Macromolecnles, (In Press).Google Scholar
  13. 13.
    E.W. Montroll and G.H. Weiss, J. Math. Phys., 6, 167 (1965).MathSciNetCrossRefGoogle Scholar
  14. 14.
    A summary of results on Levy densities (prior to the discovery of their connection with glass-relaxation and polymers) with references to early literature is found in E.W. Montroll and B.J. West, Studies in Statistical Mechanics, Vol. VII (Eds. E.W. Montroll and J.L. Lebowitz) (North Holland, New York, 1979) chapter 2.Google Scholar
  15. 15.
    J.T. Bendler, J. Statistical Physics, 36, 625 (1984).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1985

Authors and Affiliations

  • John T. Bendler
    • 1
  • Michael F. Shlesinger
    • 2
  1. 1.Polymer Physics and Engineering BranchGeneral Electric Corporate Research and DevelopmentSchenectadyUSA
  2. 2.Physics DivisionOffice of Naval ResearchArlingtonUSA

Personalised recommendations