MACSYMA: Capabilities and Applications to Problems in Engineering and the Sciences

  • Richard Pavelle


MACSYMA™ is a large, interactive computer system designed to assist engineers, scientists, and mathematicians in solving mathematical problems. A user supplies symbolic inputs and MACSYMA yields symbolic, numeric or graphic results. This paper provides an introduction to MACSYMA and provides the motivation for using the system. Many examples are given of MACSYMA’s capabilities with actual computer input and output. Also presented are several applications where MACSYMA has been employed to deal with problems in engineering and the sciences.


Ricci Tensor Computer Algebra System Linear Difference Equation Definite Integration Hand Calculation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Di1]
    Dingle, H. Proc. Nat. Acad. Sci. 19 (1933) 559.CrossRefGoogle Scholar
  2. [Fi1]
    Fitch, J. P. CAMAL User’s Manual Univ. Cambridge Computation Lab. (1975).Google Scholar
  3. [Go1]
    Gosper, R. W. Proc. Nat. Acad. Sci. 75 (1978) 40 (see also Reference MAI, 1–6–18).MathSciNetMATHCrossRefGoogle Scholar
  4. [Gou1]
    Goursat, E. A Course in Mathematical Analysis Vol.1 Dover, New York, (1904) Sec. 30.Google Scholar
  5. [Gr1]
    Gradshteyn, I. S. and Ryzhik, I. M. Table of Integrals, Series and Products 4th edition, Academic Press, New York (1965) Pg. 85, Sec. 2.269.4. The error is corrected in the 4th [sic] edition (1980).Google Scholar
  6. [Gr2]
    Gradshteyn, I. S. and Ryzhik, I. M. Table of Integrals, Series and Products 4th edition, Academic Press, New York (1980) Pg. 648, Sec. 6.282.1.MATHGoogle Scholar
  7. [Ha1]
    Harrison, B. K. Phys. Rev. 116 (1959) 1285.Google Scholar
  8. [Hu1]
    Hui, W. H. and Tenti, G. J. Applied Math. and Physics 33 (1982) 569–589.MathSciNetMATHCrossRefGoogle Scholar
  9. [Je1]
    Jeffery, A. and Kakutani, T. Ind. U. Math. J. 20 (1970) 463.CrossRefGoogle Scholar
  10. [Ka1]
    Karr, M. J. Assoc. Comp. Mach. 28 (1981) 305.MathSciNetMATHCrossRefGoogle Scholar
  11. [Kam1]
    Kamke, E. Differentialgleichungen: Losungsmethoden und Losungen Akademische Verlagsgellschaft, Leipzig (1943).Google Scholar
  12. [Ki1]
    Kilmister, C. W., and Newman, D. J. Proc. Camb. Phil. Soc. 57 (1961) 851.MathSciNetMATHCrossRefGoogle Scholar
  13. [Kl1]
    Merer, M. and Grossman, F. A New Table of Indefinite Integrals (Computer Processed) Dover, New York (1971). The authors actually used a numerical computation system to check errors in the indefinite integral tables.Google Scholar
  14. [MA1]
    The MACSYMA Reference Manual, (Version 10), Massachusetts Institute of Technology and Symbolics, December (1984).Google Scholar
  15. [Manl]
    Mansouri, F. and Chang, L. N. Phys. Rev. D 13 (1976) 3192.MathSciNetCrossRefGoogle Scholar
  16. [Mol]
    Moses, J. “MACSYMA — the fifth year”. In Proceedings Eurosam 74 Conference, Stockholm, August (1974).Google Scholar
  17. [MUC1]
    Proceedings of the 1977 MACSYMA Users’ Conference, (R. J. Fateman, Ed.), University of California, Berkeley, CA, July 27–29, NASA CP-2012, Washington, D.C. (1977).Google Scholar
  18. [MUC2]
    Proceedings of the 1979 MACSYMA Users’ Conference, (V. E. Lewis, Ed.), Washington, D.C. June 20–22, (1979).Google Scholar
  19. [MUC3]
    Proceedings of the 1984 MACSYMA Users’ Conference, (V. E. Golden, Ed.), General Electric Corporate Research and Development, Schenectady, NY, July 23–25, (1984).Google Scholar
  20. [Pa1]
    Pavelle, R. J. Math. Phys. 16 (1975) 1199.MathSciNetCrossRefGoogle Scholar
  21. [Pa2]
    Pavelle, R. Phys. Rev. Lett. 33 (1974) 1461.CrossRefGoogle Scholar
  22. [Pa3]
    Pavelle, R. Phys. Rev. Lett. 34 (1975) 1114.CrossRefGoogle Scholar
  23. [Pa4]
    Pavelle, R. Phys. Rev. Lett. 37 (1976) 961.CrossRefGoogle Scholar
  24. [Pa5]
    Pavelle, R., Rothstein, M. and Fitch, J. P. “Computer Algebra,” Scientific American 245 (December 1981).Google Scholar
  25. [Pa6]
    Pavelle, R. Phys. Rev. Lett. 40 (1978) 267.MathSciNetCrossRefGoogle Scholar
  26. [Pa7]
    Pavelle, R. and Bogen, R. A. Lett. Math. Physics 2 (1977) 55 (erratum 2 (1978) 255).MathSciNetCrossRefGoogle Scholar
  27. [Pa8]
    See MAI, Vol. 2, Sec. 3.Google Scholar
  28. [Pa9]
    Pavelle, R. Gen. Rel. Grav. 7 (1976) 383.MathSciNetMATHGoogle Scholar
  29. [Pa10]
    Pavelle, R. J. Math. Phys. 21 (1980) 14.MathSciNetMATHCrossRefGoogle Scholar
  30. [Ra1]
    Rainville, E. D. Elementary Differential Equations Macmillan, New York, N.Y. (1964).MATHGoogle Scholar
  31. [Ri1]
    Risch, R. Trans. Amer. Math. Soc. 139 (1969) 167.MathSciNetMATHCrossRefGoogle Scholar
  32. [Ri2]
    Risch, R. Bull. Amer. Math. Soc. 76 (1970) 605.MathSciNetMATHCrossRefGoogle Scholar
  33. [Ro1]
    Rosenlicht, M. Amer. Math. Monthly November (1972) 963. The author provides a readable discussion of the Risen algorithm.Google Scholar
  34. [Si1]
    Silver, G. L. J. Inorg. Nuc. Chem. 43 No. 11 (1981) 2997.CrossRefGoogle Scholar
  35. [va1]
    van Hulzen, J. A. and Calmet, J. “Computer Algebra Systems” in Buchberger, B. Collins, G. E. and Loos, R. Computer Algebra, Symbolic and Algebraic Manipulation Springer-Verlag, Wien, New York (1983) 220.Google Scholar
  36. [Wa1]
    Wang, P. S. Math. Comp. 32 (1978) 1215.Google Scholar
  37. [Ya1]
    Yang, C. N. Phys. Rev. Lett. 33 (1974) 445.MathSciNetCrossRefGoogle Scholar
  38. [Yu1]
    Yun, D. Y. Y. and Stoutemyer, D. “Symbolic Mathematical Computation” in Beizer, J., Holzman, A. G. (Eds.). Encyclopedia of Computer Science and Technology 15 Marcel Dekker, New York-Basel (1980) 235.Google Scholar

Copyright information

© Kluwer Academic Publishers 1985

Authors and Affiliations

  • Richard Pavelle
    • 1
  1. 1.Symbolics, Inc.MACSYMA GroupCambridgeUSA

Personalised recommendations