Skip to main content
  • 179 Accesses

Abstract

Soils, like metals, can behave both elastically and plastically. Elastic deformation refers to the ability of the deformed material to return to its original dimensions. Plastic deformation refers to a condition of permanent deformation. For a soil in the elastic condition, a given applied force causes a known deformation. On removal of the force, recovery takes place.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcock, R. (1983). Battery powered vehicles for field work. Trans. ASAE 26(1), 10–13.

    Google Scholar 

  • ASAE (1982). Soil cone penetrometer. ASAE Standard S.313. Am. Soc. Agric. Engr.

    Google Scholar 

  • Bekker, M. G. (1956). “Theory of Land Locomotion.” Univ. of Michigan Press, Ann Arbor.

    Google Scholar 

  • Bekker, M. G. (1960). “Off-the-Road Locomotion.” Univ. of Michigan Press, Ann Arbor.

    Google Scholar 

  • Bekker, M. G. (1969). “Introduction to Terrain Vehicle Systems.” Univ. of Michigan Press, Ann Arbor.

    Google Scholar 

  • Gee-Clough, D., McAllister, M., Pearson, G., and Evernden, D. W. (1978). The empirical prediction of tractor-implement field performance. J. Terramech. 15(2), 81–94.

    Article  Google Scholar 

  • Micklethwaite, E. W. E. (1944). Soil mechanics in relation to fighting vehicles. Military College of Science, Chertsey, England.

    Google Scholar 

  • Reece, A. R. (1966). Principles of soil-vehicle mechanics. Proc. Inst. Mech. Engr. 180, Part 2A(2), 45–66.

    Google Scholar 

  • Uffelmann, F. L. (1961). The performance of rigid cylindrical wheels on clay soil. Proc. 1st Int. Conf. Mechanics of Soil-Vehicle Systems, Turin.

    Google Scholar 

  • Voorhees, M. L., and Walker, P. N. (1977). Tractionability as a function of soil moisture. Trans. ASAE 20(5), 806–809.

    Google Scholar 

  • Wismer, R. D. (1982). Soil dynamics: A review of theory and applications. SAE paper no. 820656. SAE, Warrendale, PA.

    Book  Google Scholar 

  • Wismer, R. D., and Luth, H. J. (1974). Off-road traction prediction for wheeled vehicles. Trans. ASAE 17(1), 8–10, 14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 The AVI Publishing Company, Inc.

About this chapter

Cite this chapter

Alcock, R. (1986). Traction. In: Tractor-Implement Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6879-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6879-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6881-6

  • Online ISBN: 978-1-4684-6879-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics