Software or Hardware for Robot Vision?

  • J. D. Dessimos
  • P. Kammenos


The optimality of algorithms for the same task may differ depending on the host equipment: specialized hardware or general-purpose computer.

Several methods developed for scene analysis in robotics are presented as examples of strategies specific either to hardwired logic or to a programmed processor.

While analytic, sequential, computed, and structural methods tend to be more suitable for implementation on general-purpose computers, corresponding iterative, parallel, tabulated, and correlative solutions are more easily implemented on logic boards.

Image filtering, contour skeletonization, curve smoothing, polar mapping, and structural description for orienting industrial parts are typical tasks illustrating how the host equipment influences the choice of algorithms.


Polar Mapping Artificial Vision Polar Code Scene Analysis Orientation Estimation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Business Week, “Robots join the labor force,” June 1980, pp 62–76.Google Scholar
  2. 2.
    IEEE Computer, special issue on machine perception, May 1980, pp 11–63.Google Scholar
  3. 3.
    F. de Coulon, P. Kammenos, “Polar coding of planar objects in industrial robot vision,” Neue Technik, No. 10, 1977, pp 663–671.Google Scholar
  4. 4.
    P. Kammenos, “Performances of Polar Coding for Visual Localisation of Planar Objects,” Proc. 8th International Symposium on Industrial Robots, Stuttgart, W. Germany, pp 143–154, May-June 1978.Google Scholar
  5. 5.
    J. D. Dessimoz, “Visual Identification and Location in a Multi-object Environment by Contour Tracking and Curvature Description,” Proc. 8th Intern. Symp. on Industr. Robots, Stuttgart, Germany, pp 764–777, May-fune 1978.Google Scholar
  6. 6.
    J. D. Dessimoz, M. Kunt, G. H. Granlund, J. M. Zurcher, “Recognition and handling of overlapping industrial parts,” 9th Intern. Symp. on Industr. Robots, Washington, USA, March 13–15, 1979, pp 357–366.Google Scholar
  7. 7.
    P. Kammenos, “Extraction de contours en traitement électronique des images I: Principaux operateurs de traitement,” Bull. de l’ASE,- Zurich, No. 11, Juin 1979, pp 525–531.Google Scholar
  8. 8.
    J. M. Zurcher, “Extraction de contours en traitement electronique des images II: Processeur specialise pour signal video,” Bull. de.l’ASE, Zurich, No. 11, Juin 1979, pp 532–536.Google Scholar
  9. 9.
    J. D. Dessimoz, “Curve smoothing for improved feature extraction from digitized pictures,” Signal Processing, 1, No. 3, July 1979, pp 205–210.CrossRefGoogle Scholar
  10. 10.
    J. D. Dessimoz, “Specialised edge-trackers for contour extraction and line-thinning,” Signal Processing, 2, No. 1, Jan. 1980, pp 71–73.CrossRefGoogle Scholar
  11. 11.
    J. D. Dessimoz, “Sampling and smoothing curves in digitized pictures,” Proc. 1st EUropean Slgnal Processing COnference, EUSIPCO-80, Lausanne, Sept. 16–19, 1980, pp 157–165.Google Scholar
  12. 12.
    J. M. Zurcher, “Conception d’un système de perception visuel pour robot industriel, “ Comptes-rendus des Journees de Microtechnique, Ecole Polytechnique Federale de Lausanne, Sept. 1978.Google Scholar
  13. 13.
    H. Blum, “A transformation for extracting new descriptors of shape,” Models for the perception of speech and visual form, W. Wathen-Dunn, ed., MIT Press, 1967, pp 362–380.Google Scholar
  14. 14.
    C. Arcelli, L. Cordelli, S. Levialdi, “Parallel thinning of binary pictures,” Electronic Letters (GB), 11 (7), 1975, pp 148–149.CrossRefGoogle Scholar
  15. 15.
    T. Pavlidis, “Polygonal Approximations by Newton’s Method,” IEEE Transactions on Computers, vol. C-26, no. 8, Aug. 1977.Google Scholar
  16. 16.
    J. E. Midgley, “Isotropic Four-Point Interpolation,” Computer Graphics and Image Processing, vol. 9, pp 192–196, 1979.CrossRefGoogle Scholar
  17. 17.
    H. G. Barrow and R. J. Popplestone, “Relational Descriptions in Picture Processing,” Artificial Intelligence, vol. 2, pp 377–396, 1971.Google Scholar
  18. 18.
    F. L. Bookstein, “Fitting Conic Sections to Scattered Data,” Computer Graphics and Image Processing, 9, pp 56–71, 1979.CrossRefGoogle Scholar
  19. 19.
    M. Berthod, J. P. Maroy, “Learning and syntactic recognition of symbols drawn on a graphic tablet, “Computer Graphics and Image Processing, vol. 9, pp 166–182, 1979.CrossRefGoogle Scholar

Copyright information

© Crane Russak & Company Inc 1982

Authors and Affiliations

  • J. D. Dessimos
    • 1
  • P. Kammenos
    • 1
  1. 1.Laboratoire de traitement des signauxEcole Polytechnique Fédérale de LausanneSwitzerland

Personalised recommendations