Transcriptional Regulation by Heavy Metals, Exemplified at the Metallothionein Genes

  • Rainer Heuchel
  • Freddy Radtke
  • Walter Schaffner
Part of the Progress in Gene Expression book series (PRGE)


Seventeen of the thirty elements known to be essential for life are metals (Cotton and Wilkinson, 1980). They can function as structural or catalytic components of bioorganic molecules or even as signal transducers. (Lippard, 1993). The so-called transition metals are found in the groups HIB to IIB of the periodic system. Of these, zinc (Group IIB) is the most widely used in living systems. In 1869 it was discovered that zinc is an essential trace element for higher organisms, and in 1940, it was the first trace element to be recognized as a component of an enzyme, namely carbonic anhydrase (Raulin, 1869; Keilin and Mann, 1940). To date, there are more than 300 enzymes known to require zinc for proper functioning (Vallee and Auld, 1990). Pathological zinc deficiency, due to greatly reduced intestinal zinc uptake as in the recessive, autosomal disorder Acrodermatitis enteropathica, leads to death unless treated by high oral zinc doses (Vallee and Falchuk, 1993). Among the zinc dependent enzymes several are involved in nucleic acid metabolism such as the prokaryotic and eukaryotic RNA polymerases (Vallee and Falchuk, 1993). It has been discovered only recently that zinc is also an integral constituent of proteins that regulate the activity of eukaryotic RNA polymerases.


Heavy Metal Neurospora Crassa Candida Glabrata Metallothionein Gene Metal Exchange Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen RD, Birren BW, Taplitz SJ, Herschman HR (1986): Rat metallothionein-I structural gene and three pseudogenes, one of which contains 5’-regulatory sequences. Mol Cell Biol 6: 302–314PubMedGoogle Scholar
  2. Andersen RD, Taplitz SJ, Oberbauer AM, Calame KL, Herschman HR (1990): Metal-dependent binding of a nuclear factor to the rat metallothionein-Ipromoter. Nucleic Acids Res 18: 6049–6055PubMedGoogle Scholar
  3. Ansari AZ, O’Halloran TV (1994): An emerging role for allosteric modulation of DNA structure in transcription. In: Transcription Mechanisms and Regulation, Raven PressGoogle Scholar
  4. Ansari AZ, Chad ML, O’Halloran TV (1992): Allosteric underwinding of DNA is a critical step in positive control of transcription by Hg-MerR. Nature 355: 87–89PubMedGoogle Scholar
  5. Beach LR, P, RD (1981): Amplification of the metallothionein-I gene in cadmium-resistant mouse cells. Proc Natl Acad Sci USA 78: 2110–2114PubMedGoogle Scholar
  6. Beltramini M, Lerch K (1982): Copper transfer between Neurospora copper metallothionein and type 3 copper apoproteins. Febs Lett 142: 219–222PubMedGoogle Scholar
  7. Bremner I, Beattie JH (1990): metallothionein and the trace minerals. Annu Rev Nutr 10: 63–83Google Scholar
  8. Brenes-Pomales A, Lindegren G, Lindegren CC (1955): Gene control of copper-sensitivity in Saccharomyces Nature 176: 841–842Google Scholar
  9. Brown RS, Sander C, Argos P (1985): The primary structure of transcription factor TFIIIA has 12 consecutive repeats. FEBS Lett 186: 271–274PubMedGoogle Scholar
  10. Brugnera E, Georgiev O, Radtke F, Heuchel R, Baker E, Sutherland GR, Schaffner W (1994): Cloning, chromosomal mapping and characterization of the human metal-regulatory transcription factor MTF-1. Nucl Acids Res 22: 3167–3173PubMedGoogle Scholar
  11. Buchman C, Skroch P, Dixon W, Tullius TD, Karin M (1990): A single amino acid change in CUP2 alters its mode of DNA binding. Mol Cell Biol 10: 4778–4787PubMedGoogle Scholar
  12. Butler G, Thiele DJ (1991): ACE2, an activator of yeast metallothionein expression which is homologous to SW15. Mol Cell Biol 11: 476–485PubMedGoogle Scholar
  13. Butt TR, Ecker DJ (1987): Yeast metallothionein and applications in biotechnology. Microbiol Rev 51: 351–364PubMedGoogle Scholar
  14. Butt TR, Sternberg EJ, Gorman JA, Clark P, Hamer D, Rosenberg M, Crooke ST (1984): Copper metallothionein of yeast, structure of the gene, and regulation of expression. Proc Natl Acad Sci USA 81: 3332–3336PubMedGoogle Scholar
  15. Carter AD, Felber BK, Walling MJ, Jubier MF, Schmidt CJ, Hamer DH (1984): Duplicated heavy metal control sequences of the mouse metallothionein-I gene. Proc Natl Acad Sci USA 81: 7392–7396PubMedGoogle Scholar
  16. Compere SJ, Palmiter RD (1981): DNA methylation controls the inducibility of the mouse metallothionein-I gene in lymphoid cells. Cell 25: 233–240PubMedGoogle Scholar
  17. Cotton FA, Wilkinson G (1980): Advanced Inorganic Chemistry, A Comprehensive Text New York: John Wiley and SonsGoogle Scholar
  18. Culotta VC, Hamer DH (1989): Fine mapping of a mouse metallothionein gene metal response element. Mol Cell Biol 9: 1376–1380PubMedGoogle Scholar
  19. Czupryn M, Brown WE, Vallée BL (1992): Zinc rapidly induces a metal response element-binding factor. Proc Natl Acad Sci USA 89: 10395–10399PubMedGoogle Scholar
  20. Durnam DM, Palmiter RD (1981): Transcriptional regulation of the mouse metallothionein-I gene by heavy metals. J Biol Chem 256: 5712–5716PubMedGoogle Scholar
  21. Durnam DM, Palmiter RD (1987): Analysis of the detoxification of heavy metal ions by mouse metallothionein. Experientia Suppl, 457–463Google Scholar
  22. Ecker DJ, Butt TR, Sternberg EJ, Neeper MP, Debouck C, Gormon JA, Crooke ST (1986): Yeast metallothionein function in metal ion detoxification. J Biol Chem 261: 16895–16900PubMedGoogle Scholar
  23. Evans CF, Engelke DR, Thiele DJ (1990): ACE1 transcription factor produced in Escherichia coli binds multiple regions within yeast metallothionein upstream activation sequences. Mol Cell Biol 10: 426–429PubMedGoogle Scholar
  24. Fogel S, Welch JS (1982): Tandem gene amplification mediates copper resistance in yeast. Proc Natl Acad Sci USA 79: 5342–5346PubMedGoogle Scholar
  25. Fowler BA, Hildebrand CE, Kojima Y, Webb M (1987): Nomenclature of metallothionein. Experientia Suppl, 19–22Google Scholar
  26. Fürst P, Hu S, Hackett R, Hamer D (1988): Copper activates metallothionein gene transcription by altering the conformation of a specific DNA binding protein [published erratum appears in Cell 1989 Jan 27;56(2):following 321]. Cell 55: 705–717PubMedGoogle Scholar
  27. Gick GG, McCarty KSr (1982): Amplification of the metallothionein-I gene in cadmium-and zinc-resistant Chinese hamster ovary cells. J Biol Chem 257: 9049–9053PubMedGoogle Scholar
  28. Gralla EB, Thiele DJ, Silar P, Valentine JS (1991): ACE1, a copper-dependent transcription factor, activates expression of the yeast copper, zinc superoxide dismutase gene. Proc Natl Acad Sci USA 88: 8558–8562PubMedGoogle Scholar
  29. Grill E (1987): Phytochelatins, the heavy metal binding peptides of plants: characterization and sequence determination. Experientia Suppl, 317–322Google Scholar
  30. Grill E, Loffler S, Winnacker EL, Zenk MH (1989): Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glatmylcysteine dipeptidyl transpeptidase (phytochelatin synthetase). Proc Natl Acad Sci USA 86: 6838–6842PubMedGoogle Scholar
  31. Grill E, Winnacker EL, Zenk MH (1985): Phytochelatins: The principal heavy-metal complexing peptides of higher plants. Science 230: 4726.Google Scholar
  32. Grill E, Winnacker EL, Zenk MH (1986): Homo-phytochelatins are heavy metal-binding peptides of homo-glutathione containing Fabales. FEB S Lett 205: 47–50Google Scholar
  33. Grill E, Winnacker EL, Zenk MH (1991): Phytochelatins. In: Methods Enzymol, New York: Academic PressGoogle Scholar
  34. Hamer DH (1986): metallothionein. Amu Rev Biochem 55: 913–951Google Scholar
  35. Hamer DH, Thiele DJ, Lemontt JE (1985): Function and autoregulation of yeast coppertionein. Science 228: 685–690PubMedGoogle Scholar
  36. Hanas JS, Hazuda DJ, Bogenhagen DF, Wu FY, Wu CW (1983): Xenopus transcription factor A requires zinc for binding to the 5 S RNA gene. J Biol Chem 258:14120–14125PubMedGoogle Scholar
  37. Harley CB, Reynolds RP (1983): Analysis of E. coli promoter sequences. Nucleic Acids Research 15: 2343–2361Google Scholar
  38. Harlow P, Watkins E, Thornton RD, Nemer M (1989): Structure of an ectodermally expressed sea urchin metallothionein gene and characterization of its metal-responsive region. Mol Cell Biol 9: 5445–5455PubMedGoogle Scholar
  39. Hawley DK, McClure WR (1983): Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res 11: 2237–2255PubMedGoogle Scholar
  40. Helman JD, Shewchuk LM, Walsh CT (1990): Metal-Ion Induced Regulation of Gene Expression, New York: ElsevierGoogle Scholar
  41. Helmann JD, Wang Y, Mahler I, Walsh CT (1989): Homologous metalloregulatory proteins from both gram-positive and gram-negative bacteria control transcription of mercury resistance operons. J Bacteriol 171: 222–229PubMedGoogle Scholar
  42. Henkel T, Machleidt T, Alkalay I, Kronke M, Ben-Neriah Y, Baeuerle PA (1993): Rapid proteolysis of I kappa B-alpha is necessary for activation of transcription factor NF-kappa B. Nature 365: 182–185PubMedGoogle Scholar
  43. Heuchel R, Radtke F, Georgiev O, Stark G, Aguet M, Schaffner W (1994): The transcription factor MTF-1 is essential for basal and heavy metal-induced metallothionein gene expression. EMBO J 13: 2870–2875PubMedGoogle Scholar
  44. Hope IA, Struhl K (1986): Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell 46: 885–894PubMedGoogle Scholar
  45. Hu S, Furst P, Hamer D (1990): The DNA and Cu binding functions of ACE1 are interdigitated within a single domain. New Biol 2: 544–555PubMedGoogle Scholar
  46. Huber M, Lerch K (1987): The influence of copper on the induction of tyrosinase and laccase in Neurospora crassa. FEBS Lett 219: 335–338PubMedGoogle Scholar
  47. Hulbregtse JM, Engelke DR, Thiele DJ (1989): Copper-induced binding of cellular factors to yeast metallothionein upstream activation sequences. Proc Natl Acad Sci USA 86: 65–69Google Scholar
  48. Hunter T, Karin M (1992): The regulation of transcription by phosphorylation. Cell 70: 375–387PubMedGoogle Scholar
  49. Imagawa M, Onozawa T, Okumura K, Osada S, Nishihara T, Kondo M (1990): Characterization of metallothionein cDNAs induced by cadmium in the nematode Caenorhabditis elegans. Biochem J 268: 237–240PubMedGoogle Scholar
  50. Imbert J, Fürst P, Gedamu P, Hamer D (1990): Regulation of metallothionein gene transcription by metals. Adv Inorg Biochem 8: 139–164PubMedGoogle Scholar
  51. Jungmann J, Reins H-A, Lee J, Romeo A, Hassett R, Kosman D, Jentsch S (1993): MAC1, a nuclear regulator protein related to Cu-dependent transcription factors is involved in Cu/Fe utilization and stress resistance in yeast. EMBO J 12: 5051–5056PubMedGoogle Scholar
  52. Kadonaga JT, Carner KR, Masiarz FR, Tijian R (1987): Isolation of cDNA encoding transcription factor Spl and functional analysis of the DNA binding domain. Cell51: 1079–1090PubMedGoogle Scholar
  53. Kaegi JHR (1991): Overview of metallothionein. In: Methods Enzymol, New York: Academic PressGoogle Scholar
  54. Kaegi JHR, Kojima Y (1987): Chemistry and biochemistry of metallothionein. In: Experientia Suppl, 25–61Google Scholar
  55. Kaegi JH, Schaffer A (1988): Biochemistry of metallothionein. Biochemistry 27: 8509–8515Google Scholar
  56. Kaegi JHR, Vallee B (1960): metallothionein: a cadmium- and zinc-containing protein from equine renal cortex.J Biol Chem 235: 3460–3465Google Scholar
  57. Kaptain R (1991): Zinc-finger structures. Curr Opin Struct Biol 2: 109–115Google Scholar
  58. Karin M, Andersen RD, Slater E, Smith K, Herschman HR (1980): metallothionein mRNA induction in HeLa cells in response to zinc or dexamethasone is a primary induction response. Nature 286:12Google Scholar
  59. Karin M, Cathala G, Nguyen-Huu MC (1983): Expression and regulation of a human metallothionein gene carried on an autonomously replicating shuttle vector. Proc Natl Acad Sci USA 80: 4040–4044PubMedGoogle Scholar
  60. Karin M, Haslinger A, Holtgreve H, Richards RI, Krauter P, Westphal HM, Beato M (1984): Characterization of DNA sequences through which cadmium and glucocorticoid hormones induce human metallothionein-IIA gene. Nature 308:513–519PubMedGoogle Scholar
  61. Karin M, Najarian R, Haslinger A, Valenzuela P, Welch J, Fogel S (1984): Primary structure and transcription of an amplified genetic locus: the CUP1 locus of yeast. Proc Natl Acad Sci USA 81: 337–341PubMedGoogle Scholar
  62. Kawashima I, Kennedy TD, Chino M, Lane BG (1992): Wheat Ec metallothionein genes. Like mammalian Zn2 + metallothionein genes, wheat Zn2 + metallothionein genes are conspicuously expressed during embryogenesis. Eur J Biochem 209: 971–976PubMedGoogle Scholar
  63. Keilin D, Mann T (1940): Carbonic anhydrase. Purification and nature of the enzyme. Biochem J 34: 1163–1176PubMedGoogle Scholar
  64. Koizumi S, Suzuki K, Otsuka F (1992): A nuclear factor that recognizes the metal-responsive elements of human metallothionein IIA gene.J Biol Chem 267: 18659–18664PubMedGoogle Scholar
  65. Kondo N, Imai K, Isobe M, Goto T, Murasugi A, Wada-Nakagawa C, Hayashi Y (1984): Cadystin A and B, major unit peptides comprising cadmium binding peptides induced in a fission yeast—Separation, revision of structures and synthesis. Tetrahedron Lett 25: 3869–3872Google Scholar
  66. Lee W, Haslinger A, Karin M, Tjian R (1987a): Activation of transcription by two factors that bind promoter and enhancer sequences of the human metallothionein gene and SV40. Nature 325: 368–372PubMedGoogle Scholar
  67. Lee W, Mitchell P, Tjian R (1987b): Purified transcription factor AP-1 interacts with TPA-inducible enhancer elements. Cell 49: 741–752PubMedGoogle Scholar
  68. Lerch K (1980): Copper metallothionein, a copper-binding protein from Neurosporacrassa. Nature 284: 368–370PubMedGoogle Scholar
  69. Lippard SJ (1993): Bioinorganic chemistry: a maturing frontier [comment]. Science 261: 699–700PubMedGoogle Scholar
  70. Ma J, Ptashne M (1987): Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48: 847–853PubMedGoogle Scholar
  71. Mansour SL, Thomas KR, Capecchi MR (1988): Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336: 348–352PubMedGoogle Scholar
  72. Margoshes M, Vallée BL (1957): A cadmium protein from equine kidney cortex. J Am Chem Soc 79: 4813–4814Google Scholar
  73. Masters BA, Kelly EJ, Quaife CJ, Brinster RL, Palmiter RD (1994): Targeted disruption of metallothionein I and II genes increases sensitivity to cadmium. Proc Natl Acad Sci USA 91: 584–588PubMedGoogle Scholar
  74. Mehra RK, Garey JR, Butt TR, Gray WR, Winge DR (1989): Candida glabrata metallothioneins. Cloning and sequence of the genes and characterization of proteins.J Biol Chem 264: 19747–19753PubMedGoogle Scholar
  75. Mehra RK, Garey JR, Winge DR (1990): Selective and tandem amplification of a member of the metallothionein gene family in Candida glabrata. J Biol Chem 265: 6369–6375PubMedGoogle Scholar
  76. Mehra RK, Thorvaldsen JL, Macreadie IG, Winge DR (1992): Disruption analysis of metallothionein-encoding genes in Candida glabrata. Gene 114: 75–80PubMedGoogle Scholar
  77. Michalska AE, Choo KH (1993): Targeting and germ-line transmission of a null mutation at the metallothionein I and II loci in mouse. Proc Natl Acad Sci USA 90: 8088–8092PubMedGoogle Scholar
  78. Miller J, McLachlan AD, Klug A (1985): Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBOJA: 1609–1614Google Scholar
  79. Misra TK (1992): Bacterial resistances to inorganic mercury salts and organomer-curials. Plasmid 27: 4–16PubMedGoogle Scholar
  80. Mitchell PJ, Tjian R (1989): Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245: 371–378PubMedGoogle Scholar
  81. Mitchell PJ, Wang C, Tjian R (1987): Positive and negative regulation of transcription in vitro: enhancer-binding protein AP-2 is inhibited by SV40 T antigen. Cell 50: 847–861PubMedGoogle Scholar
  82. Mueller PR, Salser SJ, Wold B (1988): Constitutive and metal-inducible protein:DNA interactions at the mouse metallothionein I promoter examined by in vivo and in vitro footprinting. Genes Dev 2: 412–427PubMedGoogle Scholar
  83. Munger K, Germann UA, Lerch K (1985): Isolation and structural organization of the Neurospora crassa copper metallothionein gene. EMBO J 4: 2665–2668PubMedGoogle Scholar
  84. Murasugi A, Wada C, Hayashi Y (1981): Purification and unique properties in UV and CD spectra of Cd-binding peptide 1 from Schizosaccharomyces pombe. Biochem Biophys Res Commun 103: 1021–1028Google Scholar
  85. Nettesheim DG, Engeseth HR, Otvos JD (1985): Products of metal exchange reactions of metallothionein. Biochemistry 24: 6744–6751PubMedGoogle Scholar
  86. Nies DH (1992): Resistance to cadmium, cobalt, zinc, and nickel in microbes. Plasmid 56: 17–28Google Scholar
  87. O’Halloran TV (1993): Transition metals in control of gene expression [see comments]. Science 261: 715–725PubMedGoogle Scholar
  88. O’Halloran TV et al (1989): The MerR heavy metal receptor mediates positive activation in a topologically novel transcription complex. Cell 56: 119–129PubMedGoogle Scholar
  89. Olafson RW, McCubbin WD, Kay CM (1988): Primary- and secondary-structural analysis of a unique prokaryotic metallothionein from a Synechococcus sp. cyanobacterium. Biochem J 251: 691–699PubMedGoogle Scholar
  90. Otto E, Allen JM, Young JE, Palmiter RD, Maroni G (1987): A DNA segment controlling metal-regulated expression of the Drosophila melanogaster metallothionein gene Mtn. Mol Cell Biol 7: 1710–1715PubMedGoogle Scholar
  91. Otvos JD, Engeseth HR, Nettesheim DG, Hilt CR (1987): Interprotein metal exchange reactions of metallothioneins. Experientia Suppl, 171–178Google Scholar
  92. Palmiter RD (1994): Regulation of metallothionein genes by heavy metals appears to be mediated by a zinc-sensitive inhibitor that interacts with a constitutively active transcription factor, MTF-1. Proc Natl Acad Sci USA 91: 1219–1223PubMedGoogle Scholar
  93. Palmiter RD, Findley SD, Whitmore TE, Durnam DM (1992): MT-III, a brainspecific member of the metallothionein gene family. Proc Natl Acad Sci USA 89: 6333–6337PubMedGoogle Scholar
  94. Pande J, Vasak M, Kagi JH (1985): Interaction of lysine residues with the metal thiolate clusters in metallothionein. Biochemistry 24: 6717–6722PubMedGoogle Scholar
  95. Petering DH, Krezoski S, Villalobos J, Shaw CF, Otvos JD (1987): Cadmium-zinc interactions in the Ehrlich cell: metallothionein and other sites. In: Experientia Suppl, 573–580Google Scholar
  96. Picard B, Wegnez M (1979): Isolation of a 7S particle from Xenopus laevis oocytes: A 5S RNA/protein complex. Proc Natl Acad Sci USA 76: 241–245PubMedGoogle Scholar
  97. Piscator M (1964): Nord Hyg Tidskr 48: 76–82Google Scholar
  98. Quaife CJ, Findley SD, Erickson GJ, Froelick GJ, Kelly EJ, Zambrowicz BP, Palmiter RD (1994): Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratified squamous epithelia. Biochemistry 33: 7250–7259PubMedGoogle Scholar
  99. Quaife CJ, Findley SD, Erickson GJ, Kelly EJ, Zambrowicz BW, Palmiter RD (1994): personal communicationGoogle Scholar
  100. Radtke F, Heuchel R, Georgiev O, Hergersberg M, Gariglio M, Dembic Z, Schaffner W (1993): Cloned transcription factor MTF-1 activates the mouse metallothionein I promoter. EMBO J 12: 1355–1362PubMedGoogle Scholar
  101. Raulin J (1969): Etudes Cliniques sur la vegetation. Ann Sci Nat Bot Biol Veg 11: 93–299Google Scholar
  102. Rauser WE (1990): Phytochelatins. Annu Rev Biochem 59: 61–86PubMedGoogle Scholar
  103. Robbins AH, McRee DE, Williamson M, Collett SA, Xuong NH, Furey WF, Wang BC, Stout CD (1991): Refined crystal structure of Cd, Zn metallothionein at 2.0 A resolution. J Mol Biol 221: 1269–1293PubMedGoogle Scholar
  104. Robinson JN, Barton K, Naranjo CM, Sillerud LO, Trewhella J, Watt K, Jackson PJ (1987): Characterization of metal binding peptides from cadmium resistent plant cells. Experientia Suppl, 323–327Google Scholar
  105. Robinson JN, Tommey AM, Kuske C, Jackson P (1993): Plant metallothioneins. Biochem J 295: 1–10PubMedGoogle Scholar
  106. Schmid R, Zeng J, Schäffer A (1990): Experientia 46: A36Google Scholar
  107. Schmidt CJ, Jubier MF, Hamer DH (1985): Structure and expression of two human metallothionein-I isoform genes and a related pseudogene.J Biol Chem 260: 7731–7737PubMedGoogle Scholar
  108. Schreiber E, Matthias P, Müller MM, Schaffner W (1988): Identification of a novel lymphoid specific octamer binding protein (OTF- 2B) by proteolytic clipping bandshift assay (PCBA). EMBO J 7: 4221–4229PubMedGoogle Scholar
  109. Searle PF (1990): Zinc dependent binding of a liver nuclear factor to metal response element MRE-a of the mouse metallothionein-I gene and variant sequences. Nucleic Acids Res 18: 4683–4690PubMedGoogle Scholar
  110. Searl PF, Davison BL, Stuart GW, Wilkie TM, Norstedt G, Palmiter RD (1984): Regulation, linkage and sequence of mouse metallothionein I and II genes. Mol Cell Biol 4: 1221–1230Google Scholar
  111. Searl PF, Stuart GW, Palmiter RD (1987): Metal regulatory elements of the mouse metallothionein-I gene. Experientia Suppl, 407–414Google Scholar
  112. Seipel K, Georgiev O, Schaffner W (1992): Different activation domains stimulate transcription from remote (‘enhancer’) and proximal (‘promoter’) positions. EMBO J 11:4961–4968PubMedGoogle Scholar
  113. Serfling E, Lubbe A, Dorsch-Hasler K, Schaffner W (1985): Metal-dependent SV40 viruses containing inducible enhancers from the upstream region of metallothionein genes. EMBO J 4: 3851–3859PubMedGoogle Scholar
  114. Séguin C (1991): A nuclear factor requires Zn2 + to bind a regulatory MRE element of the mouse gene encoding metallothionein-I. Gene 97: 295–300PubMedGoogle Scholar
  115. Séguin C, Prevost J (1988): Detection of a nuclear protein that interacts with a metal regulatory element of the mouse metallothionein I gene. Nucleic Acids Res 16: 10547–10560PubMedGoogle Scholar
  116. Shi J, Lindsay WP, Huckle JW, Morby AP, Robinson NJ (1992): Cyanobacterial metallothionein gene expressed in Escherichia coli. Metal- binding properties of the expressed protein. FEBS Lett 303: 159–163PubMedGoogle Scholar
  117. Silver S, Walderhaug M (1992): Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria. Microbiol Rev 56: 195–228PubMedGoogle Scholar
  118. Slice LW, Freedman JH, Rubin CS (1990): Purification, characterization, and cDNA cloning of a novel metallothionein- like, cadmium-binding protein from Cae-norhabditis elegans. J Biol Chem 265: 256–263PubMedGoogle Scholar
  119. Steffens JC (1990): Ann Rev Plant Physiol Plant Mol Biol 533–575Google Scholar
  120. Stillman MJ, Cai W, Zelazowski AJ (1987): Cadmium binding to metallothioneins. Domain specificity in reactions of alpha and beta fragments, apometallothionein,and zinc metallothionein with Cd2 + . J Biol Chem 262: 4538–4548PubMedGoogle Scholar
  121. Stuart GW, Searl PF, Chen HY, Brinster RL, Palmiter RD (1984): A 12-base-pair DNA motif that is repeated several times in metallothionein gene promoters confers metal regulation to a heterologous gene. Proc Natl Acad Sci USA 81: 7318–7322PubMedGoogle Scholar
  122. Stuart GW, Searle PF, Palmiter RD (1985): Identification of multiple metal regulatory elements in mouse metallothionein-I promoter by assaying synthetic sequences. Nature 317: 828–831PubMedGoogle Scholar
  123. Sczypka MS, Thiele DJ (1989): A cysteine-rich nuclear protein activates yeast metallothionein gene transcription. Mol Cell Biol 9: 421–429Google Scholar
  124. Theunissen O, Rudt F, Guddat U, Mentzel H, Pieler T (1992): RNA and DNA binding zinc fingers in Xenopus TFIIIA. Cell 71: 679–690PubMedGoogle Scholar
  125. Thiele DJ, Hamer DH (1986): Tandemly duplicated upstream control sequences mediate copper induced transcription of saccharomyces cerevisiae copper-metallothionein gene. Mol Cell Biol 6: 1158–1163PubMedGoogle Scholar
  126. Thiele DJ (1988): ACE1 regulates expression of the Saccharomyces cerevisiae metallothionein gene. Mol Cell Biol 8: 2745–2752PubMedGoogle Scholar
  127. Thiele DJ (1992): Metal-regulated transcription in eukaryotes. Nucleic Acids Res 20: 1183–1191PubMedGoogle Scholar
  128. Uchida Y, Takio K, Titani K, Ihara Y, Tomonaga M (1991): The growth inhibitory factor that is deficient in the Alzheimer’s disease brain is a 68 amino acid metallothionein-like protein. Neuron 7: 337–347PubMedGoogle Scholar
  129. Vallee BL, Auld DS (1990): Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 29: 5647–5659PubMedGoogle Scholar
  130. Vallee BL, Falchuk KH (1993): The biochemical basis of zinc physiology. Physiol Rev 73:79–118PubMedGoogle Scholar
  131. Vallee BL, Coleman JE, Auld DS (1991): Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains. Proc Natl Acad Sci USA 88: 999–1003PubMedGoogle Scholar
  132. Vasák M, Kaegi JHR (1983): Metal Ions In Biological Systems, Sigel -, ed. New York: Marcel DekkerGoogle Scholar
  133. Welch J, Fogel S, Buchman C, Karin M (1989): The CUP2 gene product regulates the expression of the CUP1 gene, coding for yeast metallothionein. Embo J 8:255–260PubMedGoogle Scholar
  134. West AK, Hildebrand CE, Karin M, Richards RI (1990): Human metallothionein genes: Structure of the functional locus at 16q13. Genomics 8: 513–518PubMedGoogle Scholar
  135. Westin G, Schaffner W (1988a): A zinc-responsive factor interacts with a metalregulated enhancer element (MRE) of the mouse metallothionein-I gene. EMBO J 7: 3763–3770PubMedGoogle Scholar
  136. Westin G, Schaffner W (1988b): Heavy metal ions in transcription factors from HeLa cells: Spl, but not octamer transcription factor requires zinc for DNA binding and for activator function. Nucleic Acids Res 16: 5771–5781PubMedGoogle Scholar
  137. Winge DR, Nielson KB, Gray WR, Hamer DH (1985): Yeast metallothionein. Sequence and metal-binding properties. J Biol Chem 260: 14464–14470PubMedGoogle Scholar
  138. Xu L, Rungger D, Georgiev O, Seipel K, Schaffner W (1994): Different potential of cellular and viral activators of transcription revealed in oocytes and early embryos of Xenopus laevis. Biol Chem Hoppe-Seyler 375: 105–112Google Scholar
  139. Yagle MK, Palmiter RD (1985): Coordinate regulation of mouse metallothionein I and II genes by heavy metals and glucocorticoids. Mol Cell Biol 5: 291–294PubMedGoogle Scholar
  140. Zafarullah M, Bonham K, Gedamu L (1988): Structure of the rainbow trout metallothionein B gene and characterization of its metal-responsive region. Mol Cell Biol 8: 4469–4476PubMedGoogle Scholar
  141. Zeng J, Heuchel R, Schaffner W, Kagi JH (1991): Thionein (apometallothionein) can modulate DNA binding and transcription activation by zinc finger containing factor Spl. FEBS Lett 279: 310–312PubMedGoogle Scholar
  142. Zeng J, Vallée BL, Kagi JH (1991): Zinc transfer from transcription factor IIIA fingers to thionein clusters. Proc Natl Acad Sci USA 88: 9984–9988PubMedGoogle Scholar
  143. Zhou P, Szczypka MS, Sosinowski T, Thiele DJ (1992): Expression of a yeast metallothionein gene family is activated by a single metalloregulatory transcription factor. Mol Cell Biol 12: 3766–3775PubMedGoogle Scholar
  144. Zhou P, Thiele DJ (1993): Rapid transcriptional autoregulation of a yeast metalloregulatory transcription factor is essential for high-level copper detoxification. Genes Devi: 1824–1835Google Scholar
  145. Zhou P, Thiele DJ (1991): Isolation of a metal-activated transcription factor gene from Candida glabrata by complementation in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 88: 6112–6116Google Scholar

Copyright information

© Birkhäuser Boston 1995

Authors and Affiliations

  • Rainer Heuchel
  • Freddy Radtke
  • Walter Schaffner

There are no affiliations available

Personalised recommendations