Prokaryotic control of transcription: How and why does it differ from eukaryotic control?

  • Stefan Oehler
  • Benno Müller-Hill
Part of the Progress in Gene Expression book series (PRGE)


Escherichia coli and all other prokaryotes have developed elaborate mechanisms to adapt their metabolism to a rapidly changing environment. Some of these mechanisms allow the bacteria to approach or to flee particular chemicals (Adler, 1975; Boyd and Simon, 1982). We will not discuss such mechanisms here. Other mechanisms adapt the transcription rates of genes whose products are needed or not needed in a particular environment. Genes which deal with the catabolism of chemicals which suddenly appear in the environment have to be rapidly turned on. We have to recall that the inner bacterial membrane does not allow the entry of most organic chemicals. There has to be a permease, a specific pump, present which transports the chemical into the cell.


Alpha Helix Major Groove Recognition Helix Eukaryotic Transcription Factor Lambda Repressor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adhya S (1989): Multipartite genetic control elements: communication by DNA loop. Ann Rev Gent 23: 227–250Google Scholar
  2. Adler J (1975): Chemotaxis in bacteria. Ann Rev Biochem 44: 341–356PubMedGoogle Scholar
  3. Adler K, Beyreuther K, Fanning E, Geisler N, Gronenborn B, Klemm A, Müller-Hill B, Pfahl M, Schmitz A (1972): How Lac repressor binds to DNA. Nature 237: 322–327PubMedGoogle Scholar
  4. Aiba H, Fujimoto S, Ozak N (1982): Molecular cloning and nucleotide sequencing of the gene for E. coli cAMP receptor protein. Nucl Acids Res 10: 1363–1378Google Scholar
  5. Alberti S, Oehler S, v Wilcken-Bergmann B (1993): Genetic analysis of the leucine heptad repeats of Lac repressor: evidence for a 4-helical bundle. EMBO J 12: 3227–3236PubMedGoogle Scholar
  6. Beckwith J, Davies J, Gallant JA, eds. (1983): Gene Function in Procaryotes. Cold Spring Harbor: Cold Spring Harbor Laboratory PressGoogle Scholar
  7. Bell A, Gaston K, Williams R, Chapman K, Kolb A, Buc H, Minchin S, Williams J, Busby S (1990): Mutations that alter the ability of the Escherichia coli cyclic AMP receptor protein to activate transcription. Nucl Acids Res 18: 7243–7250PubMedGoogle Scholar
  8. Berg JN, von Opheusden JHJ, Burgering MJM, Boelens R, Kaptein R (1990): Structure of Arc repressor in solution: Evidence for a family of β-sheet DNA-binding proteins. Nature 346: 586–589Google Scholar
  9. Berg OG, Winter RB, von Hippel PH (1981): Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 20: 6929–6948PubMedGoogle Scholar
  10. Blackwood EM, Eisenman RN (1991): Max: A helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with myc. Science 251:1211–1217PubMedGoogle Scholar
  11. Boyd A, Simon M (1982): Bacterial Chemotaxis. Ann Rev Physiol 44: 501–517Google Scholar
  12. Bracco L, Kotlarz D, Kolb A, Dieckmann S, Buc H (1989): Synthetic curved DNA sequences can act as transcriptional activators in Escherichia coli. EMBO J 8: 4289–4296Google Scholar
  13. Brennan RG (1992): DNA recognition by the helix-turn-helix motif. Curr Op Str Biol 2: 100–108Google Scholar
  14. Brown M, Figge J, Hansen U, Wright C, Jeang K-T, Khoury G, Livingston DM, Roberts TM (1987): Lac repressor can regulate expression from a hybrid SV40 early promoter containing a lac operator in animal cells. Cell 49: 603–612PubMedGoogle Scholar
  15. Chamness GC, Willson CD (1970): An unusual lac repressor mutant, J Mol Biol 53: 561–565PubMedGoogle Scholar
  16. Cossart P, Gicquel-Sanzey B (1982): Cloning of the crp gene of Escherichia coli K 12. Nucl Acids Res 10: 1363–1378PubMedGoogle Scholar
  17. Cowell IG (1994): Repression versus activation in the control of gene transcription. TIBS 19: 38–42PubMedGoogle Scholar
  18. Croston GE, Kerrigan LA, Lira LM, Marshak DR, Kadonaga JT (1991): Sequence-specific antirepression of histone H1-mediated inhibition of basal RNA polymerase II transcription. Science 251: 644–649Google Scholar
  19. Derman AI, Prinz WA, Belin D, Beckwith J (1993): Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science 262: 1744–1747Google Scholar
  20. Deuschle U, Gentz R, Bujard H (1986): Lac repressor blocks transcribing RNA polymerase and terminates transcription. Proc Natl Acad Sci USA 83: 4134–4137PubMedGoogle Scholar
  21. de Crombrugghe B, Busby S, Buc H (1984): Cyclic AMP receptor protein: Role in transcription activation. Science 224: 831–838PubMedGoogle Scholar
  22. Drlica K, Rouviere-Yaniv J (1987): Histonelike proteins of bacteria. Microb Rev 51: 301–319Google Scholar
  23. Ebright R. (1993): Transcription activation at Class I CAP-dependent promoters. Molecular Microbiology 8 (5): 797–802PubMedGoogle Scholar
  24. Ellenberger TE, Brandi CJ, Struhl K, Harrison SC (1992): The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted α-helices: crystal structure of the protein-DNA complex. Cell 71: 1223–1237PubMedGoogle Scholar
  25. Emmer M, de Chrombrugghe B, Ractan I, Perlman R (1970): Cyclic AMP receptor protein of E. coli: Its role in the synthesis of inducible enzymes. Proc Natl Acad Sci USA 66: 480–487PubMedGoogle Scholar
  26. Englesberg E, Irr J, Power N, Lee J (1965): Positive control of enzyme synthesis by gene C in the L-arabinose system. J Bact 90: 946–957PubMedGoogle Scholar
  27. Faryar K, Gatz C (1992): Construction of a tetracycline-inducible promoter in Schizosaccharomyces pombe. Curr Genet 21: 345–349PubMedGoogle Scholar
  28. Ferré-d’Amaré A-R, Prendergast GC, Ziff EB, Burley SK (1993): Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 363: 38–45Google Scholar
  29. Fickert R, Müller-Hill B (1992): How Lac repressor finds lac operator in vitro. J Mol Biol 226: 59–68PubMedGoogle Scholar
  30. Figge J, Wright C, Collins CJ, Roberts TM, Livingston DM (1988): Stringent regulation of stably integrated chloramphenicol acetyl transferase genes by E. coli Lac repressor in monkey cells. Cell 52: 713–722PubMedGoogle Scholar
  31. Flashner Y, Gralla JD (1988): DNA dynamic flexibility and protein recognition: differential stimulation by bacterial histone-like protein HU. Cell 54: 713–721PubMedGoogle Scholar
  32. Fritz H-J, Bicknäse H, Gleumes B, Heibach C, Rosahl S, Ehring R (1988): Characterization of two mutations in the Escherichia coli galE gene inactivating the second galactose operator and comparative studies of repressor binding. EMBO J 2: 2129–2135Google Scholar
  33. Fuerst TR, Fernandez MP, Moss B (1989): Transfer of the inducible lac repressor/operator system from Escherichia coli to a vaccinia virus expression vector. Proc Natl Acad Sci USA 86: 2549–2553PubMedGoogle Scholar
  34. Gaston K, Bell A, Kolb A, Buc H (1990): Stringent spacing requirements for transcription activation by CAP. Cell 62: 733–743PubMedGoogle Scholar
  35. Gatz C, Frohberg C, Wendenburg R (1992): Stringent repression and homogeneous de-repression by tetracycline of a modified CaMV 35S promoter in intact transgenic tobacco plants. Plant J 3: 397–404Google Scholar
  36. Gehring WJ, Müller M, Affolter M, Percival-Smith A, Billeter M, Qian YQ, Otting G, Wüthrich K (1990): The structure of the homeodomain and its functional implications. TIG 6: 323–329PubMedGoogle Scholar
  37. Gilbert W, Müller-Hill B (1966): Isolation of the Lac repressor. Proc Natl Acad Sci USA 56: 1891–1898PubMedGoogle Scholar
  38. Gilbert W, Müller-Hill B (1970): The lactose repressor. In: The Lactose Operon, Beckwith JR, Zipser D, eds. Cold Spring Harbor: Cold Spring Harbor Laboratory PressGoogle Scholar
  39. Gilbert W, Majors J, Maxam A (1976): How proteins recognize DNA sequences. In: Organization and Expression of Chromosomes, Dahlem Konferenzen, Allfrey VG, Bautz EKF, McCarthy BJ, Schimke RT, Tissières A, eds. Berlin: Abakon VerlagsgesellschaftGoogle Scholar
  40. Grunstein M (1990): Nucleosomes: regulators of transcription. TIG 6: 395–400PubMedGoogle Scholar
  41. Guarente L, Birmingham-McDonogh O (1992): Conservation and evolution of transcriptional mechanisms in eucaryotes. TIG 6: 395–400Google Scholar
  42. Guarente L, Nye JS, Hochschild A, Ptashne M (1982): Mutant phage repressor with a specific defect in its positive control function. Proc Natl Acad Sci USA 79:2236–2239PubMedGoogle Scholar
  43. Hammer-Jespersen K, Munch-Petersen A (1975): Multiple regulation of nucleoside catabolizing enzymes: Regulation of the deo operon by the cytR and deoR gene products. Mol Gen Genet 137: 327–335PubMedGoogle Scholar
  44. Hanes SD, Brent R (1989): DNA specificity of the Bicoid Activator Protein is determined by Homeodomain recognition helix residue 9. Cell 57: 1275–1283PubMedGoogle Scholar
  45. Harrison SC, Aggarwal AK (1990): DNA recognition by proteins with the helix-turnhelix motif. Ann Rev Biochem 59: 933–969PubMedGoogle Scholar
  46. Hershberger PA, deHaseth PL (1991): RNA polymerase bound to the PR promoter of bacteriophage X inhibits open complex formation at the divergently transcribed PRM promoter. J Mol Biol 222: 479–494PubMedGoogle Scholar
  47. Hershberger P, Mita BC, Tripatara A, deHaseth PL (1992): Interference by PR-bound RNA polymerase with PRM function in vitro. J Biol Chem 268: 8943–8948Google Scholar
  48. Heyduk T, Lee JC, Ebright YW, Blatter EE, Zhou Y, Ebright RH (1993): CAP interacts with RNA polymerase in solution in the absence of promoter DNA. Nature 264: 548–549Google Scholar
  49. Hochschild A, Irwin N, Ptashne M (1983): Repressor structure and the mechanism of positive control. Cell 32: 319–325PubMedGoogle Scholar
  50. Hu MC-T, Davidson N (1987): The inducible lac operator-repressor system is functional in mammalian cells. Cell 48: 555–566PubMedGoogle Scholar
  51. Igarashi K, Hanamura A, Makino K, Aiba H, Aiba H, Mizuno T, Nataka A, Ishihama A (1991): Functional map of the a subunit of Escherichia coli RNA polymerase: Two models of transcription activation by positive factors. Proc Natl Acad Sci USA 88: 8958–8962PubMedGoogle Scholar
  52. Igarashi K, Ishihama, A (1991): Bipartite functional map of the E. coli RNA polymerase subunit: Involvement of the C-terminal region in transcription activation by cAMP-CRP. Cell 65: 1015–1022PubMedGoogle Scholar
  53. Irani MH, Orosz L, Adhya S (1983): A control element within a structural gene: the gal operon of Escherichia coli. Cell 32: 783–788PubMedGoogle Scholar
  54. Jacob F, Monod J (1961): Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3: 318–356PubMedGoogle Scholar
  55. Janson L, Pettersson U (1990): Cooperative interactions between transcription factors Spl and OFT-1. Proc Natl Acad Sci USA 87: 4732–4736PubMedGoogle Scholar
  56. Jobe A, Bourgeois S (1972): The Lac repressor-operator interaction VII. A repressor with unique binding properties: the X86 repressor. J Mol Biol 72: 139–152PubMedGoogle Scholar
  57. Johnson AD, Meyer BJ, Ptashne M (1979): Interactions between DNA-bound repressors govern regulation by the λ phage repressor. Proc Natl Acad Sci USA 76: 5061–5065PubMedGoogle Scholar
  58. Johnson PF, McKnight SL (1989): Eucaryotic transcriptional regulatory proteins. Annu Rev Biochem 58: 799–839PubMedGoogle Scholar
  59. Jordan SR, Pabo CO (1988): Structure of the Lambda complex at 2.5 Å resolution: Details of the repressor-operator interactions. Science 242: 839–899Google Scholar
  60. Kao-Huang Y, Revzin A, Butler A, O’Conner P, Noble D, von Hippel P (1977): Nonspecific DNA binding of genome-regulating proteins as a biological control mechanism: Measurement of DNA-bound E. coli lac repressor in vivo. Proc Nat Acad Sci USA 74: 4228–4232PubMedGoogle Scholar
  61. Kaptein R, Zuiderweg ERP, Scheek RM, Boelens R, van Gunsteren WF (1985): A protein structure from nuclear magnetic resonance data. Lac repressor headpiece. J Mol Biol 182: 179–182PubMedGoogle Scholar
  62. Khoury AM, Nick HS, Lu P (1991): In vivo interaction of Escherichia coli Lac repressor N-terminal fragments with the lac operator. J Mol Biol 219: 623–634PubMedGoogle Scholar
  63. Kleinschmidt C, Tovar K, Hillen, W, Porschke D (1987): Dynamics of repressor-operator recognition: The Tn/0-encoded tetracycline resistance control. Biochemistry 27: 1094–1104Google Scholar
  64. Knight KL, Bowie JV, Vershon AK, Kelley RD, Sauer RT (1989): The Arc and Mnt repressors. A new class of sequence-specific DNA-binding protein. J Biol Chem 264: 3639–3642PubMedGoogle Scholar
  65. Kolb A, Busby S, Garges S, Adhya S (1993): Transcriptional regulation by cAMP and its receptor protein. Ann Rev Biochem 62: 749–795PubMedGoogle Scholar
  66. Kolkhof P (1992): Specificities of three tight-binding Lac repressors. Nucl Acids Res 20: 5035–5039PubMedGoogle Scholar
  67. Kolkhof P, Teichmann D, Kisters-Woike B, Wilcken-Bergmann Bv, Müller-Hill B (1992): Lac repressor with the helix-turn-helix motif of cro binds to lac operator. EMBO J 11:3031–3038PubMedGoogle Scholar
  68. Kristie TM, LeBovitz JH, Sharp PA (1989): The octamer-binding proteins form multi-protein complexes with the HSV a TIF regulatory protein. EMBO J 8:4229–4238PubMedGoogle Scholar
  69. Lawrence, PA (1992): The making of a fly. The genetics of animal design. London: Blackwell Scientific PublicationsGoogle Scholar
  70. Laybourn PJ, Kadonaga JT (1991): Role of nucleosomal cores and histone H1 in regulation of transcription by RNA polymerase II. Science 254: 238–245PubMedGoogle Scholar
  71. Li M, Moyle H, Susskind MM (1994): Target of the transcriptional activation function of phage λcl protein. Science 263: 75–77PubMedGoogle Scholar
  72. Lin S-Y, Riggs AD (1975): The general affinity of lac repressor for E. coli DNA: Implications for gene regulation in procaryotes and eucaryotes. Cell 4: 107–111PubMedGoogle Scholar
  73. Little JW (1984): Autodigestion of lex A and phage lambda repressors. Proc Natl Acad Sci USA 81: 1357–1359Google Scholar
  74. Losick R, Chamberlin M (1976): RNA Polymerase. Cold Spring Harbor: Cold Spring Harbor Laboratory PressGoogle Scholar
  75. Malan TP, McLure WR (1984): Dual promoter control of the Escherichia coli Lactose operon. Cell 39: 173–180PubMedGoogle Scholar
  76. Maniatis T, Ptashne M, Backman K, Kleid D, Flashman S, Jeffrey A, Maurer R (1975): Recognition sequences of repressor and polymerase in the operators of bacteriophage lambda. Cell 5: 109–113PubMedGoogle Scholar
  77. Meyer BJ, Maurer R, Ptashne M (1980): Gene regulation at the right operator (OR) of bacteriophage λ II. OR 1, O R 2, and OR 3: their roles in mediating the effects of repressor and cro. J Mol Biol 139: 163–194PubMedGoogle Scholar
  78. McKnight SL, Yamamoto KR (1992): Transcriptional Regulation. Vol. 1 and 2. Cold Spring Harbour: Cold Spring Harbor Laboratory PressGoogle Scholar
  79. Miller JH, Reznikoff WS, eds. (1978): The Operon. Cold Spring Harbor: Cold Spring Harbor Laboratory PressGoogle Scholar
  80. Mitchell PJ, Tjian R (1989): Transcriptional regulation in mammalian cells by sequence-specific DNA-binding proteins. Science 245: 371–378PubMedGoogle Scholar
  81. Mowbray SL, Cole LB (1992): 1.6 Å X-ray structure of the periplasmic ribose receptor from Escherichia coli. J Mol Biol 225: 155–175PubMedGoogle Scholar
  82. Müller (1994): unpublished observationGoogle Scholar
  83. Müller MM, Gerstner T, Schaffner W (1988): Enhancer sequences and regulation of gene transcription. Eur J Biochem 176: 485–495PubMedGoogle Scholar
  84. Müller-Hill B (1971): Lac Repressor. Angew Chem Int Ed 10: 160–172Google Scholar
  85. Müller-Hill B (1983): Sequence homology between Lac and Gal repressors and three sugar-binding periplasmatic proteins. Nature 302: 163–164PubMedGoogle Scholar
  86. Nichols JC, Vyas NK, Quiocho FA, Matthews KS (1993): Models of Lactose repressor core based on alignment with sugar-binding proteins is concordant with genetic and chemical data. J Biol Chem 268: 17602–17612PubMedGoogle Scholar
  87. Nicklin MJH, Casari G (1991): A single mutation in a truncated Fos protein allows it to interact with the TRE in vitro. Oncogene 6: 173–179PubMedGoogle Scholar
  88. Oehler S, Amouyal M, Kolkhof P, Wilcken-Bergmann Bv, Müller-Hill B (1994); Quality and position of the three lac operators of E. coli define efficiency of repression. EMBO J 13; 3348–3355PubMedGoogle Scholar
  89. Oehler S, Eismann ER, Krämer H, Müller-Hill B (1990): The three operators of the lac Operon cooperate in repression. EMBO J 9: 973–979PubMedGoogle Scholar
  90. Ogata RT, Gilbert W (1978): An amino-terminal fragment of Lac repressor binds specifically to lac operator. Proc Natl Acad Sci USA 75: 5851–5854PubMedGoogle Scholar
  91. Otwinowski Z, Schevitz RW, Zhang R-G, Lawson CL, Joachimiak A, Marmorstein RQ, Luisi BF, Sigler PB (1988): Crystal structure of trp repressor/operator complex at atomic resolution. Nature 335: 321–329PubMedGoogle Scholar
  92. Pabo CO, Sauer RT (1984): Protein-DNA recognition. Ann Rev Biochem 53: 293–321PubMedGoogle Scholar
  93. Pabo CO, Sauer RT, Sturtevant, JM, Ptashne M (1979): The X repressor contains two domains. Proc Natl Acad Sci USA 76: 1608–1612PubMedGoogle Scholar
  94. Paulmier N, Yaniv M, von Wilcken-Bergmann B, Müller-Hill B (1987): gal4 transcription activator protein of yeast can function as a repressor in Escherichia coli. EMBO J 6: 3539–3542PubMedGoogle Scholar
  95. Pettijohn DE (1988): Histone-like proteins and bacterial chromosome structure. J Biol Chem 263: 12793–12796PubMedGoogle Scholar
  96. Pfahl M (1976): Lac repressor-operator interaction. Analysis of the X86 repressor mutant.J Mol Biol 106: 857–869PubMedGoogle Scholar
  97. Pirrotta V (1975): Sequence of the OR operator of phage λ Nature 254: 114–117PubMedGoogle Scholar
  98. Ptashne M (1992): A genetic Switch. Cambridge: Blackwell Scientific Publications & Cell PressGoogle Scholar
  99. Ptashne M, Backmann K, Humayun MZ, Jeffrey A, Maurer R, Meyer B, Sauer RT (1976): Autoregulation and function of a repressor in bacteriophage lambda. Science 194: 156–161PubMedGoogle Scholar
  100. Ransone LJ, Wamley P, Morley KL, Verma A (1990): Domain swapping reveals the modular nature of Fos, Jun, and CREB proteins. Mol Cell Biol 10: 4565–4573PubMedGoogle Scholar
  101. Reitzer LJ, Magasanik B (1986): Transcription of gin A in E. coli is stimulated by activator bound to sites far from the promoter. Cell 45: 785–792PubMedGoogle Scholar
  102. Renkawitz R (1990): Transcriptional repression in eucaryotes. TIG 6: 192–196PubMedGoogle Scholar
  103. ReznikofT WS, Abelson JN (1978): The Lac promoter. In: The Operon, Miller JH, Reznikoff WS, eds. Cold Spring Harbor: Cold Spring Harbor Laboratory PressGoogle Scholar
  104. Reznikoff WS, Winter RB, Hurley CK (1974): The location of the repressor binding sites in the lac operon. Proc Natl Acad Sci USA 79: 2314–2318Google Scholar
  105. Rickenberg HV, Cohen GN, Buttin G, Monod J (1956): La galactoside-permease d’Escherichia coli. Ann Inst Pasteur 91: 829–857Google Scholar
  106. Roberts JW, Roberts CW (1975): Proteolytic cleavage of bacteriophage Lambda repressor in induction. Proc Natl Acad Sci USA 72: 147–151PubMedGoogle Scholar
  107. Schmitz A, Galas DJ (1979): The interaction of RNA polymerase and lac repressor with the lac control region. Nucl Acids Res 6: 111–137PubMedGoogle Scholar
  108. Schüle R, Muller M, Kaltschmidt C, Renkawitz R (1988): Many transcription factors interact synergetically with steroid receptors. Science 242: 1418–1420PubMedGoogle Scholar
  109. Schultz SC, Shields GC, Steitz TA (1991): Crystal structure of a CAP-DNA complex: The DNA is bent by 90°. Science 253: 1001–1007PubMedGoogle Scholar
  110. Schwartz M (1967): Sur l’existence chez Escherichia coli K12 d’une régulation commune à la biosynthèse des receptors du bacteriophage et au métabolisme du maltose. Ann Inst Pasteur 113: 685–704Google Scholar
  111. Sellitti MA, Pavco PA, Steege DA (1987): Lac repressor blocks in vivo transcription of lac control region DNA. Proc Natl Acad Sci USA 84: 3199–3203PubMedGoogle Scholar
  112. Shore D, Langowski J, Baldwin RL (1981): DNA flexibility studied by covalent closure of short fragments into circles. Proc Natl Acad Sci USA 78: 4833–4837PubMedGoogle Scholar
  113. Simons (1984): unpublished observationGoogle Scholar
  114. Sogaard-Anderson L, Pedersen H, Holst B, Valentin-Hansen P (1991): A novel function of the cAMP-CRP complex in Escherichia coli: cAMP-CRP repressor an adaptor for the CytR repressor in the deo operon. Mol Microbiol 5: 969–975Google Scholar
  115. Somers WS, Phillips SEV (1992): Crystal structure of the met repressor-operator complex at 2.8 A resolution reveals DNA recognition by β strands. Nature 359: 387–393PubMedGoogle Scholar
  116. Staacke D, Walter B, Kisters-Woike B, Wilcken-Bergmann Bv, Müller-Hill B (1990): How Trp repressor binds to its operator. EMBO J 9: 1963–1967PubMedGoogle Scholar
  117. Straney SB, Crothers DM (1987): Lac repressor is a transient gene activating protein. Cell 51: 699–707PubMedGoogle Scholar
  118. Struhl K (1989): Molecular mechanism of transcriptional regulation in yeast. Annu Rev Biochem 58: 1051–1077PubMedGoogle Scholar
  119. Takeda Y (1979): Specific repression of in vitro transcription by the Cro repressor of bacteriophage λ. J Mol Biol 127: 177–189PubMedGoogle Scholar
  120. Teichmann (1991): unpublished observationGoogle Scholar
  121. Vyas NK, Vyas MN, Quiocho FA (1988): Sugar and signal-transducer binding sites of the Escherichia coli galactose chemoreceptor protein. Science 242: 1290–1295PubMedGoogle Scholar
  122. Vyas NK, Vyas MN, Quiocho FA (1991): Comparison of the periplasmic receptors for L-arabinose, D-glucose/D-galactose, and D-ribose. J Biol Chem. 266: 5226–5237PubMedGoogle Scholar
  123. Walker GC (1984): Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev 48: 60–93Google Scholar
  124. Williams R, Bell A, Sims G, Busby S (1991): The role of two surface exposed loops in transcription activation by the Escherichia coli CRP and FNR proteins. Nucl Acids Res 19: 6705–6712PubMedGoogle Scholar
  125. Zhou Y, Busby S, Ebright RH (1993): Identification of the functional subunit of a dimeric transcription activator protein by use of oriented heterodimers. Cell 73: 375–379PubMedGoogle Scholar
  126. Zubay G, Schwartz D, Beckwith J (1970): Mechanism of activation of catabolite-sensitive genes: A positive control system. Proc Natl Acad Sci USA 66: 104–110PubMedGoogle Scholar

Copyright information

© Birkhäuser Boston 1995

Authors and Affiliations

  • Stefan Oehler
  • Benno Müller-Hill

There are no affiliations available

Personalised recommendations