Retinoic Acid Receptors

  • Marie Keaveney
  • Hendrik G. Stunnenberg
Part of the Progress in Gene Expression book series (PRGE)


Retinoids, a class of hydrophobic compounds including retinol (vitamin A), retinoic acid (RA) and a series of natural and synthetic derivatives, exhibit a vast array of profound and diverse effects on vertebrate development from early embryogenesis to maturity. Several families of serum, cytoplasmic and nuclear proteins are involved in the metabolism and biological actions of retinoids. Some of these proteins mediate direct effects of retinoids on gene expression while others are involved in their transport, storage and metabolism. The effects of retinoids on transcription are mediated by a number of nuclear binding proteins of two types: retinoic acid receptors (RARs) and retinoid X receptors (RXRs). RXR serves as an auxiliary factor required by RAR and other nuclear receptors for target gene regulation. These ligand-inducible transcription factors belong to the nuclear receptor superfamily, which also includes receptors for thyroid hormone, vitamin D3 and steroid hormones. Detailed studies of RAR and RXR function have revealed the existence of a vast elaborate web of gene regulation. This chapter will aim to analyse the diverse and complex pathways of retinoic acid responses.


Retinoic Acid Acute Promyelocytic Leukemia Retinoic Acid Receptor Thyroid Hormone Receptor Retinoid Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adan RA, Cox JJ, Beischlag TV, Burbach JP (1993): A composite hormone response element mediates the transactivation of the rat oxytocin gene by different classes of nuclear hormone receptors. Mol Endocrinol 7: 47–57PubMedCrossRefGoogle Scholar
  2. Allan GF, Leng X, Tsai SY, Weigel NL, Edwards DP, Tsai MJ, O’Malley BW (1992a): Hormone and antihormone induce distinct conformational changes which are central to steroid receptor activation. J Biol Chem 267: 19513–19520PubMedGoogle Scholar
  3. Allan GF, Tsai SY, Tsai MJ, O’Malley BW (1992b): Ligand-dependent conformational changes in the progesterone receptor are necessary for events that follow DNA binding. Proc Natl Acad Sci USA 89: 11750–11754PubMedCrossRefGoogle Scholar
  4. Allenby G, Bocquel MT, Saunders M, Kazmer S, Speck J, Rosenberger M, Lovey A, Kastner P, Grippo JF, Chambon P, Levin AA (1993): Retinoic acid receptors and retinoid X receptors: interactions with endogenous retinoic acids. Proc Natl Acad Sci USA 90: 30–34PubMedCrossRefGoogle Scholar
  5. Amero SA, Kretsinger RH, Moncrief ND, Yamamoto KR, Pearson WR (1992): The origin of nuclear receptor proteins: a single precursor distinct from other transcription factors. Mol Endocrinol 6: 3–7PubMedCrossRefGoogle Scholar
  6. Aneskievich BJ, Fuchs E (1992): Terminal differentiation in keratinocytes involves positive as well as negative regulation by retinoic acid receptors and retinoid X receptors at retinoid response elements. Mol Cell Biol 12: 4862–4871PubMedGoogle Scholar
  7. Apfel C, Bauer F, Crettaz M, Forni L, Kamber M, Kaufmann F, LeMotte P, Pirson W, Klaus M (1992): A retinoic acid receptor alpha antagonist selectively counteracts retinoic acid effects. Proc Natl Acad Sci USA 89: 7129–7133PubMedCrossRefGoogle Scholar
  8. Ästrom A, Pettersson U, Krust A, Chambon P, Voorhees JJ (1990): Retinoic acid and synthetic analogs differentially activate retinoic acid receptor dependent transcription. Biochem Biophy Res Comm 173: 339–345CrossRefGoogle Scholar
  9. Bailey JS, Siu C-H (1988): Purification and partial characterization of a novel binding protein for retinoic acid from neonatal rat. J Biol Chem 263: 9326–9332PubMedGoogle Scholar
  10. Baker AR, McDonnell DP, Hughes M, Crisp TM, Mangelsdorf DJ, Haussler MR, Pike JW, Shine J, O’Malley BW (1988): Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci USA 85: 3294–3298PubMedCrossRefGoogle Scholar
  11. Baniahmad A, Ha I, Reinberg D, Tsai S, Tsai M-J, O’Malley BW (1993): Interaction of human thyroid hormone receptor ß with transcription factor TFIIB may mediate target gene derepression and activation by thyroid hormone. Proc Natl Acad Sci USA 90: 8832–8836PubMedCrossRefGoogle Scholar
  12. Barettino D, Bugge TH, Bartunek P, Vivanco RM, Sonntag BV, Beug H, Zenke M, Stunnenberg HG (1993): Unliganded T3R, but not its oncogenic variant, v-erb A, suppresses RAR-dependent transactivation by titrating out RXR. EM BO J 12: 1343–1354Google Scholar
  13. Barettino D, Vivanco Ruiz MdM, Stunnenberg HG (1994): Characterization of the ligand-dependent transactivation domain of thyroid hormone receptor. EM BO J 13: 3039–3049Google Scholar
  14. Benbrook D, Lenhardt E, Pfahl M (1988): A new retinoic acid receptor identified from a hepatocellular carcinoma. Nature 333: 669–672PubMedCrossRefGoogle Scholar
  15. Berkenstam A, Vivanco Ruiz MdM, Barettino D, Horikoshi M, Stunnenberg HG (1992): Cooperativity in transactivation between retinoic acid receptor and TFIID requires an activity analogous to EIA. Cell 69: 401–412PubMedCrossRefGoogle Scholar
  16. Berrodin TJ, Marks MS, Ozato K, Linney E, Lazar MA (1992): Heterodimerization among thyroid hormone receptor, retinoic acid receptor, retinoid X receptor, chicken ovalbumin upstream promoter transcription factor, and an endogenous liver protein. Mol Endocrinol 6: 1468–1478PubMedCrossRefGoogle Scholar
  17. Beug H, Vennström B (1991): Avian erythroleukaemia: Possible mechanisms involved in v-erb A oncogene function. In: Nuclear Hormone Receptors, Parker MG, ed. London: Academic PressGoogle Scholar
  18. Blomhoff R, Green MH, Berg T, Norum KR (1991): Vitamin A metabolism: new perspectives on absorption, transport and storage. Physiol Rev 71: 952–990Google Scholar
  19. Blomhoff R, Green MH, Berg T, Norum KR (1990): Transport and storage of vitamin A. Science 250: 399–404PubMedCrossRefGoogle Scholar
  20. Blumberg B, Mangelsdorf DJ, Dyck JA, Bittner DA, Evans RM, De Robertis E (1992): Multiple retinoid-responsive receptors in a single cell: families of RXRs and RARs in the Xenopus egg. Proc Natl Acad Sci USA 89: 2321–2325PubMedCrossRefGoogle Scholar
  21. Boylan JF, Lohnes D, Taneja R, Chambon P, Gudas LJ (1993): Loss of retinoic acid receptor gamma function in F9 cells by gene disruption results in aberrant Hoxa-1 expression and differentiation upon retinoic acid treatment. Proc Natl Acad Sci USA 90: 9601–9605PubMedCrossRefGoogle Scholar
  22. Brand N, Petkovich M, Krust A, Chambon P, de Thé H, Marchio A, Tiollais P, Dejean A (1988): Identification of a second human retinoic acid receptor. Nature 332: 850–853PubMedCrossRefGoogle Scholar
  23. Brand NJ, Petkovich M, Chambon P (1990): Characterization of a functional promoter for the human retinoic acid receptor alpha (hRARα). Nucl Acids Res 18: 6799–6806PubMedCrossRefGoogle Scholar
  24. Brockes JP (1989): Retinoids, homeobox genes and limbs morphogenesis. Neuron 2: 1285–1294PubMedCrossRefGoogle Scholar
  25. Brockes JP (1990): Retinoic acid and limb regeneration. J Cell Sci Suppl 13: 191–198PubMedGoogle Scholar
  26. Brockes J (1991): We may not have a morphogen. Nature 350: 15PubMedCrossRefGoogle Scholar
  27. Bugge TH, Pohl J, Lonnoy O, Stunnenberg HG (1992): RXR alpha, a promiscuous partner of retinoic acid and thyroid hormone receptors. EMBO J 11: 1409–1418PubMedGoogle Scholar
  28. Burnside J, Darling DS, Carr FE, Chin WW (1989): Thyroid hormone regulation of the rat glycoprotein hormone α-subunit gene promoter activity. J Biol Chem 264: 6886–6891PubMedGoogle Scholar
  29. Burnstein KL, Cidlowski JA (1993): Multiple mechanisms for regulation of steroid hormone action./Cell Biochem 51: 130–134CrossRefGoogle Scholar
  30. Castaigne S, Chomienne C, Daniel MT, Ballerini P, Berger R, Fenaux P, Degos L (1990): All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia: Clinical results. Blood 76: 1704–1709PubMedGoogle Scholar
  31. Chambon P (1994): The retinoid signalling pathway: molecular and genetic analyses. Seminars in Cell Biology 5: 115–125PubMedCrossRefGoogle Scholar
  32. Chen Z, Brand NJ, Chen A, Chen SJ, Tong JH, Wang ZY, Waxman S, Zelent A (1993): Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant k(l 1:17) translocation associated with acute promyelocytic leukaemia. EMBO J 12: 1161–1167PubMedGoogle Scholar
  33. Chomienne C, Balitrand N, Bellerini P, Castaigne S, de Thé H, Degos L (1991): All-trans retinoic acid modulates the retinoic acid receptor-α in promyelcytic cells. J Clin Invest 88: 2150–2154PubMedCrossRefGoogle Scholar
  34. Chomienne C, Ballerini P, Balitrand N, Amar M, Bernard JF, Boivin P, Daniel MT, Berger R, Castaigne S, Degos L (1989): Retinoic acid: an alternative therapy of promyelocytic leukaemias. Lancet 1: 746–747CrossRefGoogle Scholar
  35. Chomienne C, Ballerini P, Balitrand N, Daniel MT, Fenaux P, Castaigne S, Degos, L (1990): All-trans retinoic acid in acute promyelocytic leukemias. II. In vitro studies: structure-function relationship. Blood 76: 1710–1717PubMedGoogle Scholar
  36. Chytil F (1984): Retinoic acid: biochemistry, pharmacology, toxicology and therapeutic use. Pharama Res Suppl 36: 93–100Google Scholar
  37. Chytil FJ, Ong, DE (1984): Cellular retinoid-binding proteins. In: The Retinoids, Sporn MB, Roberts AB, Goodman DS eds. New York: Academic PressGoogle Scholar
  38. Collins SJ (1987): The HL-60 promyelocytic leukemia cell line: Proliferation, differentiation and cellular oncogene expression. Blood 70: 1233–1244PubMedGoogle Scholar
  39. Collins SJ, Robertson KA, Mueller L (1990): Retinoic acid-induced granulocytic differentiation of HL-60 myeloid leukemia cells is mediated directly through the retinoic acid receptor oc. Mol Cell Biol 10: 2154–2163Google Scholar
  40. Cooney AJ, Tsai SY, O’Malley, BW, Tsai MJ (1992): Chicken ovalbumin upstream promoter transcription factor (COUP-TF) dimers bind to different GGTCA response elements, allowing COUP-TF to repress hormonal induction of the vitamin D3, thyroid hormone, and retinoic acid receptors. Mol Cell Biol 12: 4153–4163PubMedGoogle Scholar
  41. Danielian PS, White R, Lees JA, Parker MG (1992): Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. EMBO J 11: 1025–1033PubMedGoogle Scholar
  42. Davis KD, Lazar MA (1993): Induction of retinoic acid receptor-beta by retinoic acid is cell specific. Endocrinol 132: 1469–1474CrossRefGoogle Scholar
  43. Degos L, Chomienne C, Daniel M-T, Berger R, Dombret H, Fenaux P, Castaigne SGoogle Scholar
  44. (1990): Treatment of first relapse in acute promyelocytic leukemia with all-trans retinoic acid. Lancet 336: 1440–1441Google Scholar
  45. De Luca LM (1991): Retinoids and their receptors in differentiation, embryogenesis, and neoplasia. FASEB J 5: 2924–2933PubMedGoogle Scholar
  46. Demmer LA, Birkenmeier EH, Sweetser DA, Leving MS, Zollman S, Sparkes RS, Mohandas T, Lusis AJ, Gordon JI (1987): The cellular retinol binding protein II gene. J Biol Chem 262: 2458–2467PubMedGoogle Scholar
  47. Dencker L, Annerwall E, Busch C, Eriksson U (1990): Localization of specific retinoid-acid-binding protein (CRABP) in the early mouse embryo. Development 110: 343–352PubMedGoogle Scholar
  48. Denis M, Gustafsson J, Wikstrom A (1988): Interaction of the MR = 90,000 heat shock protein with the steroid binding domain of the glucocorticoid receptor. J Biol Chem 263: 18520–18523PubMedGoogle Scholar
  49. Desbois C, Aubert D, Legrand C, Pain B, Samarut J (1991): A novel mechanism of action of v-erb A: Abrogation of the inactivation of transcription factor AP-1 by retinoic acid and thyroid hormone receptors. Cell 67: 731–740PubMedCrossRefGoogle Scholar
  50. De Thé H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A (1991): The PML-RARα fusion mRNA generated by the t(15; 17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66: 675–684PubMedCrossRefGoogle Scholar
  51. De Thé, H, Marchio A, Tiollas P, Dejean A (1989): Differential expression and ligand regulation of the retinoic acid receptor α and β genes. EM BO J 8: 429–433Google Scholar
  52. De Thé H, Vivanco Ruiz MdM, Tiollais. P, Stunnenberg H, Dejean A (1990): Identification of a retinoic acid responsive element in the retinoic acid receptor β gene. Nature 343: 177–180PubMedCrossRefGoogle Scholar
  53. Diamond MI, Miner J, Yoshinaga SK, Yamamoto, KR (1990): Transcription factor interactions: selectors of positive or negative regulation from a single DNA element. Science 249: 1266–1272PubMedCrossRefGoogle Scholar
  54. Dingwell C, Laskey RA (1991): Nuclear target sequences — a consensus? Trends Biochem Sci 16: 478–481CrossRefGoogle Scholar
  55. Dollé P, Fraulob V, Kastner P, Chambon P (1994): Developmental expression of murine retinoid X receptor (RXR) genes. Mech of Dev 45: 91–104CrossRefGoogle Scholar
  56. Dollé P, Ruberte E, Kastner P, Petkovich M, Stoner CM, Gudas, LJ, Chambon P (1989): Differential expression of genes encoding a, ß and y retinoic acid receptors and CRABP in the developing limbs of the mouse. Nature 342: 702–705PubMedCrossRefGoogle Scholar
  57. Dollé P, Roberte E, Leroy P, Morriss-Kay G, Chambon P (1990): Retinoic acid receptors and cellular binding proteins. I. A systematic study of their differential pattern of transcription during mouse organogenesis. Development 110: 1133–1151PubMedGoogle Scholar
  58. Drouin J, Sun YL, Chamberland M, Gauthier Y, Lean AD, Nemer M, Schmidt TJ (1993): Novel glucocorticoid receptor complex with DNA element of the hormone-repressed POMC gene. EM BO J 12: 145–156Google Scholar
  59. Durand B, Saunders M, Leroy P, Leid M, Chambon P (1992): All-trans and 9-cis retinoic acid induction of CRABP II transcription is mediated by RAR-RXR heterodimers bound to DR1 and DR2 repeated motifs. Cell 71: 73–85PubMedCrossRefGoogle Scholar
  60. Dyck JA, Maul GG, Miller WHJ, Chen JD, Kakizuka A, Evans RM (1994): A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell 76: 333–343PubMedCrossRefGoogle Scholar
  61. Eichele G (1989a): Retinoic acid induces a pattern of digits in anterior half wing buds that lack the zone of polarizing activity. Development 107: 863–867PubMedGoogle Scholar
  62. Eichele G (1989b): Retinoids and vertebrate limb pattern formation. Trends in Genet. 5: 246–251CrossRefGoogle Scholar
  63. Fawell SE, Lees JA, White R, Parker MG (1990): Characterization and colocalization of steroid binding and dimerization activities in the mouse estrogen receptor. Cell 60: 953–962PubMedCrossRefGoogle Scholar
  64. Folkers GE, van der Leede BJ, van der Saag PT (1993): The retinoic acid receptor-beta 2 contains two separate cell-specific transactivation domains, at the N-terminus and in the ligand-binding domain. Mol Endocrinol 7: 616–627PubMedCrossRefGoogle Scholar
  65. Fondell JD, Roy AL, Roeder RG (1993): Unliganded thyroid hormone receptor inhibits formation of functional preinitiation complex: implications for active repression. Genes Dev 7: 1400–1410PubMedCrossRefGoogle Scholar
  66. Forman BM, Samuels HH (1990a): Dimerization among nuclear hormone receptors. New Biol 2: 587–594PubMedGoogle Scholar
  67. Forman BM, Samuels HH (1990b): Interactions among a subfamily of nuclear hormone receptors: The regulatory zipper model. Mol Endocrinol 4: 1293–1301PubMedCrossRefGoogle Scholar
  68. Freemont PS, Hanson IM, Trowsdale J (1991): A novel cysteine-rich motif. Cell 64: 483–484PubMedCrossRefGoogle Scholar
  69. Giguere V, Lyn S, Yip P, Siu CH, Amin S (1990a): Molecular cloning of cDNA encoding a second cellular retinoic acid binding protein. Proc Natl Acad Sci USA 87: 6233–6237PubMedCrossRefGoogle Scholar
  70. Giguere V, Ong ES, Segui P, Evans RM (1987): Identification of a receptor for the morphogen retinoic acid. Nature 330: 624–629PubMedCrossRefGoogle Scholar
  71. Giguere V, Shago M, Zirnibl RTP, Rossant J, Varmuza S (1990b). Identification of a novel isoform of the retinoic acid receptor y expressed in the mouse embryo. Mol Cell Biol 10: 2335–2340PubMedGoogle Scholar
  72. Glass CK, DiRenzo J, Kurokawa R, Han Z (1991): Regulation of Gene Expression by Retinoic Acid Receptors. DNA Cell Biol 10: 623–638PubMedCrossRefGoogle Scholar
  73. Goodman DS (1984): Vitamin A and retinoids in health and disease. New Engl J Med 310: 1023–1031PubMedCrossRefGoogle Scholar
  74. Graupner G, Malle G, Maignan J, Lang G, Pruniéras M, Pfahl M (1991): 6′-substituted naphthalene-2-carboxylic acid analogs, a new class of retinoic acid receptor subtype-specific ligands. Biochem Biophy Res Comm 179: 1554–1561Google Scholar
  75. Green S, Chambon P (1988): Nuclear receptors enhance our understanding of transcription regulation. Trends Genet 4: 309–314PubMedCrossRefGoogle Scholar
  76. Grignani F, Fagioli M, Ferrucci PF, Alcalay M, Pelicci PG (1993a): The molecular genetics of acute promyelocytic leukemia. Blood Rev 7: 87–93PubMedCrossRefGoogle Scholar
  77. Grignani F, Ferrucci PF, Testa U, Talamo G, Fagioli M, Alcalay M, Mencarelli A, Grignani F, Peschle C, Nicoletti I, Pelicci PG (1993b): The acute promyelocytic leukemia-specific PML-RAR alpha fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Cell 74: 423–431PubMedCrossRefGoogle Scholar
  78. Gronemeyer H (1993): Transcription activation by nuclear receptors. J Recept Res 13: 667–691PubMedGoogle Scholar
  79. Gronemeyer H, Benhamou B, Berry M, Bocquel MT, Gofflo D, Garcia T, Lerouge T, Metzger D, Meyer ME, Tora, L, Chambon P (1992): Mechanisms of antihormone action. J Steroid Biochem Mol Biol 41: 217–221PubMedCrossRefGoogle Scholar
  80. Guiochon-Mantel A, Loosfelt H, Lescop P, Sar S, Atger M, Perrot-Applanat M, Milgrom E (1989): Mechanisms of nuclear localization of the progesterone receptor: evidence for interaction between monomers. Cell 57: 1147–1154PubMedCrossRefGoogle Scholar
  81. Hanson IM, Poustka A, Trowsdale J (1991): New genes in the class II region of the major histocompatibility complex. Genomics 10: 417–424PubMedCrossRefGoogle Scholar
  82. Hazel TG, Nathans D, Lau LF (1988): A gene inducible by serum growth factors encodes a member of the steroid and thyroid hormone receptor superfamily. Proc Natl Acad Sci USA 85: 8444–8448PubMedCrossRefGoogle Scholar
  83. Hernandez N (1993): TBP, a universal eukaryotic transcription factor? Genes Dev 7: 1291–1308PubMedCrossRefGoogle Scholar
  84. Heyman RA, Mangelsdorf DJ, Dyck JA, Stein R, Eichele G, Evans, RM, Thaller C (1992): 9-Cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 68: 397–406Google Scholar
  85. Horikoshi N, Maguire K, Kralli A, Maldonado E, Reinberg D, Weinmann R (1991): Direct interaction between adenovirus EIA protein and the TATA box binding transcription factor IID. Proc Natl Acad Sci USA 88: 5124–5128PubMedCrossRefGoogle Scholar
  86. Houle B, Rochette-Egly C, Bradley WE (1993): Tumor-suppressive effect of the retinoic acid receptor beta in human epidermoid lung cancer cells. Proc Natl Acad Sci USA 90: 985–989PubMedCrossRefGoogle Scholar
  87. Ikeda Y, Lala DS, Luo X, Kim E, Moisan M-P, Parker KL (1993): Characterization of the mouse FTZ-F1 gene, which encodes a key regulator of steroid hydrooxylase gene expression. Mol Endocrinol 7: 852–860PubMedCrossRefGoogle Scholar
  88. Ing NH, Beekman JM, Tsai SY, Tsai MJ, O’Malley BW (1992): Members of the steroid hormone receptor superfamily interact with TFIIB (S300-II). J Biol Chem 267: 17617–17623PubMedGoogle Scholar
  89. Izpisua-Belmonte J-C, Tickle C, Mangelsdorf DF, Dollé P, Wolpert L, Duboule D (1991): Expression of the homeobox Hox-4 genes and the specification of position in chick wing development. Nature 350: 585–589PubMedCrossRefGoogle Scholar
  90. Jonat C, Rahmsdorf HJ, Park KK, Cato ACB, Gebel S, Ponta H, Herrlich P (1990): Antitumour promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid. Cell 62: 1189–1204PubMedCrossRefGoogle Scholar
  91. Jones-Villeneuve EM, Rudnicki VMA, Harris JF, McBurney MW (1983: Retinoic acid induced neural differentiation of embryonal carcinoma cells. Mol Cell Biol 3: 2271–2279PubMedGoogle Scholar
  92. Kakizuka A, Miller WHJ, Umesono K, Warrell RPJ, Frankel SR, Murty VVVS, Dmitrovsky E, Evans RM (1991): Chromosomal translocation t(15; 17) in human acute promyelocytic leukemia fuses RARa with a novel putative transcription factor, PML. Cell 66: 663–674PubMedCrossRefGoogle Scholar
  93. Kastner P, Krust A, Mendelsohn C, Gamier JM, Zelent A, Leroy P, Staub A, Chambon P (1990): Murine isoforms of retinoic acid receptor y with specific patterns of expression. Proc Natl Acad Sci USA 87: 2700–2704PubMedCrossRefGoogle Scholar
  94. Kastner P, Perez A, Lutz Y, Rochette-Egly C, Gaub MP, Durand B, Lanotte M, Berger R, Chambon P (1992): Structure, localization and transcriptional properties of two classes of retinoic acid receptor alpha fusion proteins in acute promyelocytic leukemia (APL): structural similarities with a new family of oncoproteins. EM BO J 11: 629–642Google Scholar
  95. Keaveney M, Berkenstam A, Feigenbutz M, Vriend G, Stunnenberg HG (1993): Residues in the TATA-binding protein required to mediate a transcriptional response to retinoic acid in EC cells. Nature 365: 562–566PubMedCrossRefGoogle Scholar
  96. Keidel S, LeMotte P, Apfel C (1994): Different agonist- and antagonist-induced conformational changes in retinoic acid receptors analyzed by protease mapping. Mol Cell Biol 14: 287–298PubMedGoogle Scholar
  97. Kerppola TK, Curran T (1991): Transcription factor interactions: Basics on zippers. Curr Opin Struct Biol 1: 71–79CrossRefGoogle Scholar
  98. Kessel M, Gruss P. (1991): Homeotic transformations of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid. Cell 67: 89–104PubMedCrossRefGoogle Scholar
  99. Kliewer SA, Umersono K, Heyman RA, Mangelsdorf DJ, Dyck JA, Evans RM (1992a): Retinoid X receptor-COUP-TF interactions modulate retinoic acid signalling. Proc Natl Acad Sci USA 89: 1448–1452PubMedCrossRefGoogle Scholar
  100. Kliewer SA, Umesono K, Mangelsdorf DJ, Evans RM (1992b): Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature 355: 446–449PubMedCrossRefGoogle Scholar
  101. Koelle MR, Talbot WS, Seagraves WA, Bender MT, Cherbas P, Hogness DS (1991): The Drosophila EcR gene encodes an Ecdysone receptor, a new member of the steroid receptor superfamily. Cell 67: 59–77PubMedCrossRefGoogle Scholar
  102. Krishna V, Chatterjee K, Lee J-K, Rentoumis A, Jameson JL (1989): Negative regulation of the thyroid-stimulating hormone α gene by thyroid hormone: Receptor interaction adjacent to the TATA box. Proc Natl Acad Sci USA 86: 9114–9118CrossRefGoogle Scholar
  103. Krust A, Kastner PH, Petkovich M, Zelent A, Chambon P (1989): A third human retinoic acid receptor, hRARy. Proc Natl Acad Sci USA 86: 5310–5314PubMedCrossRefGoogle Scholar
  104. Kumar V, Chambon P (1988): The estrogen receptor binds tightly to its responsive element as a ligand-induced homodimer. Cell 55: 145–156PubMedCrossRefGoogle Scholar
  105. La Thangue NB, Rigby PWJ (1987): An Adenovirus E1A-like transcription factor is regulated during the differentiation of murine Embryonal Carcinoma stem cells. Cell 49: 507–513PubMedCrossRefGoogle Scholar
  106. Ladias JAA, Karathanasis SK (1991): Regulation of the apolipoprotein AI gene by ARP-1, a novel member of the steroid receptor superfamily. Science 251: 561–565PubMedCrossRefGoogle Scholar
  107. Laudet V, Hanni C, Coll J, Catzflis F, Stehelin D (1992): Evolution of the nuclear receptor gene superfamily. EMBO J 11: 1003–1013PubMedGoogle Scholar
  108. Lavorgna G, Ueda H, Clos J, Wu C (1991): FTZ-F1, a steroid hormone receptor-like protein implicated in the activation of fushi tarazu. Science 252: 848–851PubMedCrossRefGoogle Scholar
  109. Lazar MM, Hodin RA, Darling DS, Chin WW (1989): A novel member of the thyroid/steroid hormone receptor family is encoded by the opposite strand of the rat c-erb A-alpha transcriptional unit. Mol Cell Biol 9: 1128–1136PubMedGoogle Scholar
  110. Lee MS, Kliewer SA, Provencal J, Wright PE, Evans RM (1993): Structure of the retinoid X receptor alpha DNA binding domain: a helix required for homodimeric DNA binding. Science 260: 1117–1121PubMedCrossRefGoogle Scholar
  111. Lee WS, Kao CC, Bryant GO, Liu X, Berk AJ (1991): Adenovirus EIA activation domain binds the basic repeat in the TATA box transcription factor. Cell 67: 365–376PubMedCrossRefGoogle Scholar
  112. Lehmann JM, Dawson MI, Hobbs PD, Husmann M, Pfahl M (1991a): Identification of retinoids with nuclear receptor subtype-selective activities. Cancer Res 51: 4804–4809PubMedGoogle Scholar
  113. Lehmann JM, Hoffmann B, Pfahl M (1991b): Genomic organization of the retinoic acid receptor gamma gene. Nucl Acids Res 19: 573–578PubMedCrossRefGoogle Scholar
  114. Lehmann JM, Jong L, Fanjul A, Cameron JF, Lu XP, Haefner P, Dawson MI, Pfahl M (1992): Retinoids selective for retinoid X receptor response pathways. Science 258: 1944–1946PubMedCrossRefGoogle Scholar
  115. Leid M, Kastner P, Chambon P (1992a): Multiplicity generates diversity in the retinoic acid signalling pathways. Trends Biochem Sci 17: 427–433PubMedCrossRefGoogle Scholar
  116. Leid M, Kastner P, Lyons R, Nakshatri H, Saunders M, Zacharewski T, Chen J-Y, Staub A, Garnier J-M, Mader S, Chambon P (1992b): Purification, cloning, and RXR identity of a HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently. Cell 68: 377–395PubMedCrossRefGoogle Scholar
  117. Leroy P, Krust A, Zelent A, Mendelsohn C, Gamier JM, Kastner P, Dierich A, Chambon P (1991a): Multiple isoforms of the mouse retinoic acid receptor α are generated by alternative splicing and differential induction by retinoic acid. EMBO J 10: 59–69PubMedGoogle Scholar
  118. Leroy P, Nakshatri H, Chambon P (1991b): The mouse retinoic acid receptor α2 isoform is transcribed from a promoter that contains a retinoic acid response element. Proc Natl Acad Sci USA 88: 10138–10142PubMedCrossRefGoogle Scholar
  119. Levin AA, Sturzenbecker LJ, Kazmer S, Bosakowski T, Huselton C, Allenby G, Speck J, Kratzeisen C, Rosenberger M, Lovey A, Grippo JF (1992): 9-cis retinoic acid stereoisomer binds and activates the nuclear receptor RXR alpha. Nature 355: 359–361PubMedCrossRefGoogle Scholar
  120. Li E, Sucov HM, Lee KF, Evans RM, Jaenisch R (1993): Normal development and growth of mice carrying a targeted disruption of the alpha 1 retinoic acid receptor gene. Proc Natl Acad Sci USA 90: 1590–1594PubMedCrossRefGoogle Scholar
  121. Lipkin SM, Nelson CA, Glass CK, Rosenfeld MG (1992): A negative retinoic acid response element in the rat oxytocin promoter restricts transcriptional stimulation by heterologous transactivation domains. Proc Natl Acad Sci USA 89: 1209–1213PubMedCrossRefGoogle Scholar
  122. Lohnes D, Dierich A, Ghyselinck N, Kastner P, Lampron C, LeMeur M, Lufkin T, Mendelsohn C, Nakshatri H, Chambon P (1992): Retinoid receptors and binding proteins. J Cell Sci Suppl 16: 69–76PubMedGoogle Scholar
  123. Lohnes D, Kastner P, Dierich A, Mark M, LeMeur M, Chambon P (1993): Function of retinoic acid receptor gamma in the mouse. Cell 73: 643–658PubMedCrossRefGoogle Scholar
  124. Lufkin T, Lohnes D, Mark M, Dierich A, Gorry P, Gaub MP, LeMeur M, Chambon P (1993): High postnatal lethality and testis degeneration in retinoic acid receptor alpha mutant mice. Proc Natl Acad Sci USA 90: 7225–7229PubMedCrossRefGoogle Scholar
  125. Luisi BF, Xu WX, Otwinowski Z, Freedman LP, Yamamoto KR, Sigler PB (1991): Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352: 497–505PubMedCrossRefGoogle Scholar
  126. Maden M, Ong DE, Chytil F (1990): Retinoid-binding protein distribution in the developing mammalian nervous system. Development 109: 75–80PubMedGoogle Scholar
  127. Maden M, Ong DE, Summerbell D, Chytil F (1988): Spatial distribution of cellular protein binding to retinoic acid in the chick limb bud. Nature 335: 733–735PubMedCrossRefGoogle Scholar
  128. Maden M, Ong DE, Summerbell D, Chytil F (1989): The role of retinoid-binding proteins in the generation of pattern in the developing limb, the regenerating limb and the nervous system. Development Suppl 107: 109–119Google Scholar
  129. Mader S, Leroy P, Chen JY, Chambon P (1993): Multiple parameters control the selectivity of nuclear receptors for their response elements. Selectivity and promiscuity in response element recognition by retinoic acid receptors and retinoid X receptors. J Biol Chem 268: 591–600PubMedGoogle Scholar
  130. Mangelsdorf DJ, Evans RM (1992): Retinoic Acid Receptors as Transcription Factors. In: Transcriptional Regulation, McKnight S Yamamoto KR, eds. New York: CSHL PressGoogle Scholar
  131. Mangelsdorf DJ, Borgmeyer U, Heyman RA, Zhou JY, Ong ES, Oro AE, Kakizuka A, Evans RM (1992): Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev 6: 329–344PubMedCrossRefGoogle Scholar
  132. Mangelsdorf DJ, Ong ES, Dyck JA, Evans RM (1990): Nuclear receptor that identifies a novel retinoic acid response pathway. Nature 345: 224–229PubMedCrossRefGoogle Scholar
  133. Marks MS, Hallenbeck PL, Nagata T, Segars JH, Appella E, Nikodem VM, Ozato K (1992): H-2RIIBP (RXRβ) heterodimerization provides a mechanism for combinatorial diversity in the regulation of retinoic acid and thyroid hormone responsive genes. EMBO J 11: 1419–1435PubMedGoogle Scholar
  134. Masagué J (1990): The transforming growth factor-β family. Ann Rev Cell Biol 6:597–641CrossRefGoogle Scholar
  135. Matsuoka A, Miyamura K, Emi N, Tahara T, Tanimoto M, Naoe T, Ohno R, Kakizuka A, Evans RM, Saito H (1993): Unexpected heterogeneity of PML/RAR alpha fused mRNA detected by nested polymerase chain reaction in acute promyelocytic leukemia. Leukemia 7: 1151–1155PubMedGoogle Scholar
  136. Mattei MG, Riviere M, Krust A, Ingvarsson S, Venström B, Islam MW, Levan G, Kastner P, Zelent A, Chambon P, Szpierer J, Szpierer C (1991): Chromosomal assignment of retinoic acid receptor (RAR) genes in the human, mouse and rat genomes. Genomics 10: 1061–1069PubMedCrossRefGoogle Scholar
  137. Mendelsohn C, Larkin S, Mark M, LeMeur M, Clifford J, Zelent A, Chambon P (1994): RARβ isoforms: distinct transcriptional control by retinoic acid and specific spatial patterns of promoter activity during mouse embryonic development. Mech of Dev 45: 227–241CrossRefGoogle Scholar
  138. Mendelsohn C, Ruberte E, LeMeur M, Morriss-Kay G, Chambon P (1991): Developmental analysis of the retinoic acid-inducible RAR-β2 promoter in transgenic animals. Development 113: 723–734PubMedGoogle Scholar
  139. Mendelsohn C, Ruberte, E, Chambon P (1992): Retinoid receptors in vertebrate limb development. Dev Biol 152: 50–61PubMedCrossRefGoogle Scholar
  140. Mietus SM, Sladek FM, Ginsburg GS, Kuo CF, Ladias JA, Darnell JJ, Karathanasis SK (1992): Antagonism between apolipoprotein AI regulatory protein 1, Ear3/COUP-TF, and hepatocyte nuclear factor 4 modulates apolipoprotein CIII gene expression in liver and intestinal cells. Mol Cell Biol 12: 1708–1718Google Scholar
  141. Milbrandt J (1988): Nerve growth factor induces a gene homologous to the glucocorticoid receptor gene. Neuron 1: 183–188PubMedCrossRefGoogle Scholar
  142. Miner JN, Yamamoto KR (1991): Regulatory crosstalk at composite response elements. Trends Biochem Sci 16: 423–427PubMedCrossRefGoogle Scholar
  143. Miner JN, Yamamoto KR (1992): The basic region of AP-1 specifies glucocorticoid receptor activity at a composite response element. Genes Dev 6: 2491–2501PubMedCrossRefGoogle Scholar
  144. Miner JN, Diamond MI, Yamamoto KR (1991): Joints in the regulatory lattice: Composite regulation by steroid receptor-AP-1 complexes. Cell Growth Diff 2: 525–530PubMedGoogle Scholar
  145. Minucci S, Zand DJ, Dey A, Marks MS, Nagata T, Grippo JF, Ozato K (1994): Dominant negative retinoid X receptor beta inhibits retinoic acid-responsive gene regulation in embryonal carcinoma cells. Mol Cell Biol 14: 360–372PubMedGoogle Scholar
  146. Miyajima N, Horiuchi R, Shibuya Y, Fukushige S-I, Matsubara K-I, Toyoshima K, Yamamoto T (1989): Two erb A homologs encoding proteins with different T3 binding capacities are transcribed from opposite DNA strands of the same genetic locus. Cell 57: 31–39PubMedCrossRefGoogle Scholar
  147. Mlodzik M, Hiromi Y, Weber U, Goodman CS, Rubin GM (1990): The Drosophila seven-up gene, a member of the steroid receptor gene superfamily, controls photoreceptor cell fates. Cell 60: 211–224PubMedCrossRefGoogle Scholar
  148. Moore DM (1990): Diversity and unity in the nuclear hormone receptors: A terpenoid receptor superfamily. New Biol 2: 100–105PubMedGoogle Scholar
  149. Morriss-Kay G (1993): Retinoic acid and craniofacial development: molecules and morphogenesis. BioEssays 15: 9–15PubMedCrossRefGoogle Scholar
  150. Näär AM, Boutin J-M, Lipkin SM, Yu, VC, Holloway JM, Glass, CK, Rosenfeld MG (1991): The orientation and spacing of core DNA-binding motifs dictate selective transcriptional responses to three nuclear receptors. Cell 65: 1267–1279PubMedCrossRefGoogle Scholar
  151. Nagpal S, Friant S, Nakshatri H, Chambon P (1993): RARs and RXRs: evidence for two autonomous transactivation functions (AF-1 and AF-2) and heterodimerization in vivo. EMBO J 12: 2349–2360PubMedGoogle Scholar
  152. Nagpal S, Saunders M, Kastner P, Durand B, Nakshatri H, Chambon P (1992a): Promoter context- and response element-dependent specificity of the transcriptional activation and modulating functions of retinoic acid receptors. Cell 70: 1007–1019PubMedCrossRefGoogle Scholar
  153. Nagpal S, Zelent A, Chambon P (1992b): RAR-β, a retinoic acid receptor isoform is generated from RAR-β2 by alternative splicing and usage of a CUG initiator codon. Proc Natl Acad Sci USA 89; 2718–2722PubMedCrossRefGoogle Scholar
  154. Nakai A, Kartha S, Sakurai A, Toback FG, De Groot LJ (1990): A human early response gene homologous to murine nur77 and rat NGFI-B, and related to the nuclear receptor superfamily. Mol Endocrinol 4: 1438–1443PubMedCrossRefGoogle Scholar
  155. Nakshatri H, Chambon P (1994): The directly repeated RG(G/T)TCA motifs of the rat and mouse cellular retinol-binding protein II genes are promiscuous binding sites for RAR, RXR, HNF-4, and ARP-1 homo- and heterodimers. J Biol Chem 269: 890–902PubMedGoogle Scholar
  156. Nicholson RC, Mader S, Nagpal S, Rochette-Egly C, Chambon P (1990): Negative regulation of the rat stromelysin gene promoter by retinoic acid is mediated by an API binding site. EMBO J 9: 4443–4454PubMedGoogle Scholar
  157. Noji S, Nohno T, Koyama E, Muto K, Ohyama K, Aoki Y, Ohsugi K, Ide H, Taniguchi S, Saito T (1991): Retinoic acid induces polarizing activity but it is unlikely to be a morphogen in the chick limb bud. Nature 350: 83–86PubMedCrossRefGoogle Scholar
  158. O’Donnell AL, Koenig RJ (1990): Mutational analysis identifies a new functional domain of the thyroid hormone receptor. Mol Endocrinol 4: 715–720PubMedCrossRefGoogle Scholar
  159. O’Malley BW, Conneely OM (1992): Orphan receptors: in search of a unifying hypothesis for activation. Mol Endocrinol 6: 1359–1361PubMedCrossRefGoogle Scholar
  160. Ong DE (1984): A novel retinol-binding protein from rat. J Biol Chem 259: 1476–1482PubMedGoogle Scholar
  161. Ong DE (1987): Cellular retinoid binding proteins. Arch Dermatol 123: 1693a–1695aCrossRefGoogle Scholar
  162. Oro AE, McKeown M, Evans RM (1990): Relationship between the product of the Drosophila ultraspiracle locus and vertebrate retinoid X receptor. Nature 347: 298–301PubMedCrossRefGoogle Scholar
  163. Pandolfi PP, Alcalay M, Fagioli M, Zangrilli D, Mencarelli A, Diverio D, Biondi A, Lo Coco F, Rambaldi A, Grignani F, Rochette-Egly C, Gaube M-P, Chambon P, Pelicci PG (1992): Genomic variability and alternative splicing generate multiple PML/RARa transcripts that encode aberrant PML proteins and PML/RARα isoforms in acute promyelocytic leukaemia. EMBO J 11: 1397–1407PubMedGoogle Scholar
  164. Parker MG (1993): Steroid and related receptors. Curr Opin Cell Biol 5: 499–504PubMedCrossRefGoogle Scholar
  165. Perez A, Kastner P, Sethi S, Lutz Y, Reibel C, Chambon P (1993): PMLRAR homodimers: distinct DNA binding properties and heteromeric interactions with RXR. EMBO J 12: 3171–3182PubMedGoogle Scholar
  166. Perez-Castro AV, Toth-Rogler LE, Wei L-N, Nguyen-Huu MC (1989): Spatial and temporal pattern of expression of the cellular retinoic acid-binding protein and the cellular retinol-binding protein during mouse embryogenesis. Proc Natl Acad Sci USA 86: 8813–8817PubMedCrossRefGoogle Scholar
  167. Perlmann T, Rangarajan PN, Umesono K, Evans RM (1993): Determinants for selective RAR and TR recognition of direct repeat HREs. Genes Dey 7: 1411–1422CrossRefGoogle Scholar
  168. Petkovich M, Brand NJ, Krust A, Chambon P (1987): A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 330: 444–450PubMedCrossRefGoogle Scholar
  169. Picard D, Yamamoto KR (1987): Twin signals mediate hormone dependent nuclear localization of the glucocorticoid receptor. EMBO J 6: 3333–3340PubMedGoogle Scholar
  170. Pignoni F, Baldarelli RM, Steingrimsson E, Diaz, RJ, Patapoutian A, Merriam JR, Lengyel JA (1990): The Drosophila gene tailless is expressed at the embryonic termini and is a member of the steroid receptor superfamily. Cell 62: 151–163PubMedCrossRefGoogle Scholar
  171. Pijnappel WW, Hendriks HF, Folkers GE, van der Brink CE, Dekker EJ, Edelen-bosch C, van der Saag PT, Durston AJ (1993): The retinoid ligand 4-oxo-retinoic acid is a highly active modulator of positional specification. Nature 366: 340–344PubMedCrossRefGoogle Scholar
  172. Pratt WB, Jolly DJ, Pratt DV, Hollenberg SM, Giguere, V, Cadepond FM, Schweizer-Groyer G, Catelli M, Evans RM, Baulieu E (1988): A region in the steroid binding domain determines formation of the non-DNA-binding, 9S glucocorticoid receptor complex. J Biol Chem 263: 267–273PubMedGoogle Scholar
  173. Ptashne M (1988): How eukaryotic transcriptional activators work. Nature 335: 683–689PubMedCrossRefGoogle Scholar
  174. Ragsdale CW, Brockes JP (1991): Retinoic acid receptors and vertebrate limb morphogenesis. In: Nuclear Hormone Receptors, Parker MG, ed. London: Academic PressGoogle Scholar
  175. Rousselot P, Hardas B, Patel A, Guidez F, Gaken J, Castaigne S, Dejean A, De Thé H, Degos L, Farzaneh F, Chomienne C (1994): The PML-RAR alpha gene product of the t(15; 17) translocation inhibits retinoic acid-induced granulocytic differentiation and mediated transactivation in human myeloid cells. Oncogene 9: 545–551PubMedGoogle Scholar
  176. Ruberte E, Dollé P, Krust A, Zelent A, Morriss-Kay G, Chambon P (1990): Specific spatial and temporal distribution of retinoic acid receptor gamma transcripts during mouse embryogenesis. Development 108: 213–222PubMedGoogle Scholar
  177. Ruberte E, Dollé P, Chambon P, Morriss-Kay G (1991): Retinoic acid receptors and cellular binding proteins. III. Their differential pattern of transcription during early morphogenesis in mouse embryos. Development 111: 45–60PubMedGoogle Scholar
  178. Ruberte E, Friederich V, Morriss-Kay G, Chambon P (1992): Differential distribution patterns of CRABP I and CRABP II transcripts during mouse embryogenesis. Development 115: 973–987PubMedGoogle Scholar
  179. Ryseck R-P, MacDonald-Bravo H, Mattéi M-G, Ruppert S, Bravo R (1989): Structure, mapping and expression of a growth factor inducible gene encoding a putative nuclear hormonal binding receptor. EMBO J 8: 3327–3335PubMedGoogle Scholar
  180. Saari JC, Bredberg L, Garwin GG (1982): Identification of the endogenous retinoids associated with three cellular retinoid-binding proteins from bovine retina and retinal pigment epithelium. J Biol Chem 257: 13329–13333PubMedGoogle Scholar
  181. Sagami I, Tsai SY, Wang H, Tsai M-J, O’Malley BW (1986): Identification of two factors required for the transcription of the ovalbumin gene. Mol Cell Biol 6: 4259–4267PubMedGoogle Scholar
  182. Sap J, Muñoz A, Damm K, Goldberg Y, Ghysdael J, Vennström B (1986): The c-erb A protein is a high-affinity receptor for thyroid hormone. Nature 324: 635–640PubMedCrossRefGoogle Scholar
  183. Schüle R, Rangarajan P, Kliewer S, Ransone LJ, Bolado J, Yang N, Verma IM, Evans RM (1990): Functional antagonism between oncoprotein c-Jun and the glucocorticoid receptor. Cell 62, 1217–1226PubMedCrossRefGoogle Scholar
  184. Schüle R, Randarajan P, Yang N, Kliewer S, Ransone LJ, Bolado J, Verma IM, Evans RM (1991): Retinoic acid is a negative regulator of AP-1-responsive genes. Proc Natl Acad Sci USA 88: 6092–6096PubMedCrossRefGoogle Scholar
  185. Schwabe JW, Chapman L, Finch JT, Rhodes D (1993): The crystal structure of the estrogen receptor DNA-binding domain bound to DNA: how receptors discriminate between their response elements. Cell 75: 567–578PubMedCrossRefGoogle Scholar
  186. Schwabe JWR, Neuhaus D, Rhodes D (1990): Solution structure of the DNA-binding domain of the estrogen receptor. Nature 348: 458–461PubMedCrossRefGoogle Scholar
  187. Shubeita HE, Sambrook JF, McCormick AM (1987): Molecular cloning and analysis of functional cDNA and genomic clones encoding bovine cellular retinoic-acid binding protein. Proc Natl Acad Sci USA 84: 5645–5649PubMedCrossRefGoogle Scholar
  188. Simeone A, Acampora D, Arcioni L, Andrews PW, Boncinelli E, Mavilio F (1990): Sequential activation of Hox2 homeobox genes by retinoic acid in human embryonal carcinoma cells. Nature 346: 763–766PubMedCrossRefGoogle Scholar
  189. Slack JM (1987): We have a morphogen. Nature 317: 553–554CrossRefGoogle Scholar
  190. Sladek FM, Zhong W, Lai E, Darnell JE (1990): Liver-enriched transcription factor HNF-4 is a novel member of the steroid receptor superfamily. Genes Dev 4: 2353–2365PubMedCrossRefGoogle Scholar
  191. Smith SM, Eichele G (1991): Temporal and regional difference in the expression pattern of distinct retinoic acid receptor-β transcripts in the chick embryo. Development 111: 245–252PubMedGoogle Scholar
  192. Smith SM, Pang, K, Sundin O, Wedden SE, Thaller C, Eichele G (1989): Molecular approaches to vertebrate limb morphogenesis. Development Suppl 107: 121–131Google Scholar
  193. Smith WC, Nakshatri H, Leroy P, Rees J, Chambon P (1991): A retinoic acid response element is present in the mouse cellular retinol binding protein I (mCRBPI) promoter. EMBO J 10: 2223–2230PubMedGoogle Scholar
  194. Sporn MB, Roberts AB (1990): TGF-β: problems and prospects. Cell Regulation 1: 875–882PubMedGoogle Scholar
  195. Sporn MB, Roberts A (1991): Interactions of retinoids and transforming growth factor-β in regulation of cell differentiation and proliferation. Mol Endocrinol 5: 3–7PubMedCrossRefGoogle Scholar
  196. Stoner CM, Gudas LJ (1989): Mouse cellular retinoic acid binding protein: cloning, complementary DNA sequence and messenger RNA expression during the retinoic acid induced differentiation of F9 wild type and RA-3–10 mutant teratocarcinoma cells. Cancer Res 49: 1497–1504PubMedGoogle Scholar
  197. Strickland S, Mahdavi V (1978): The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell 15: 333–343CrossRefGoogle Scholar
  198. Stunnenberg HG (1993): Mechanisms of transactivation by retinoic acid receptors. Bio Essay s 15: 309–315Google Scholar
  199. Sucov HM, Murakami KK, Evans RM (1990): Characterization of an autoregulated response element in the mouse retinoic acid receptor type β gene. Proc Natl Acad Sci USA 87: 5392–5396PubMedCrossRefGoogle Scholar
  200. Summerbell D, Maden M (1990): Retinoic acid, a developmental signalling molecule. Trends-Neuro sci 13: 142–147CrossRefGoogle Scholar
  201. Sundelin J, Anundi H, Tragardh L, Eriksson UL, Lind P, Ronne P, Peterson PA, Rask L (1985): The primary structure of rat liver cellular retinol-binding protein. J Biol Chem 260: 6488–6493PubMedGoogle Scholar
  202. Tabin CJ (1991): Retinoids, homeoboxes, and growth factors: towards molecular models for limb development. Cell 66: 199–217PubMedCrossRefGoogle Scholar
  203. Thaller C, Eichele G (1987): Identification and spatial distribution of retinoids in the developing chick limb bud. Nature 327: 625–628PubMedCrossRefGoogle Scholar
  204. Thaller C, Eichele G (1990): Isolation of 3,4-didehydroretinoic acid, a novel morphogenetic signal in the chick wing bud. Nature 345: 815–819PubMedCrossRefGoogle Scholar
  205. Thomas HE, Stunnenberg HG, Stewart AF (1993): Heterodimerisation of the Drosophila ecdysone receptor with retinoid X receptor and Ultraspiracle. Nature 362: 471–475PubMedCrossRefGoogle Scholar
  206. Thompson KL, Santon JB, Shephard LB, Walton GM, Gill GN (1992). A nuclear protein is required for thyroid hormone receptor binding to an inhibitory half-site in the epidermal growth factor receptor promoter. Mol Endocrinol 6: 627–635PubMedCrossRefGoogle Scholar
  207. Tickle C, Alberts B, Wolpert L, Lee J (1982): Local application of retinoic acid to the limb bud mimics the action of the polarizing region. Nature 296: 564–566PubMedCrossRefGoogle Scholar
  208. Tomic M, Jiang C-K, Epstein HS, Freedberg IM, Samuels HH, Blumenberg M (1990): Nuclear receptors for retinoic acid and thyroid hormone regulate transcription of keratin genes. Cell Regulation 1: 965–973PubMedGoogle Scholar
  209. Tran P, Zhang XK, Salbert G, Hermann T, Lehmann JM, Pfahl M (1992): COUP orphan receptors are negative regulators of retinoic acid response pathways. Mol Cell Biol 12: 4666–4676PubMedGoogle Scholar
  210. Tsai SY, Carlstedt-Duke J, Weigel NL, Dahlamn K, Gustaffson JA, Tsai M-J, O’Malley BW (1988): Molecular interactions of steroid hormone receptor with its enhancer element: evidence for receptor dimer formation. Cell 55: 361–369PubMedCrossRefGoogle Scholar
  211. Tsukiyama T, Ueda H, Hirose S, Niwa O (1992): Embryonal long terminal repeat-binding protein is a murine homolog of FTZ-F1, a member of the steroid receptor superfamily. Mol Cell Biol 12: 1286–1291PubMedGoogle Scholar
  212. Tugwood JD, Issemann I, Anderson RG, Bundell KR, McPheat WL, Green S (1992): The mouse peroxisome proliferator activated receptor recognizes a response element in the 5′ flanking sequence of the rat acyl CoA oxidase gene. EMBO J 11: 433–439PubMedGoogle Scholar
  213. Ueda H, Sun G-C, Murata T, Hirose S (1992): A novel DNA-binding motifs abuts the Zinc finger domain of insect nuclear hormone receptor FTZ-F1 and mouse embryonal long terminal repeat-binding protein. Mol Cell Biol 12: 5667–5672PubMedGoogle Scholar
  214. Umesono K, Murakami KK, Thompson CC, Evans RM (1991): Direct repeats as selective response elements for the thyroid hormone, retinoic acid and vitamin D receptors. Cell 65: 1255–1266PubMedCrossRefGoogle Scholar
  215. Vaessen M-J, Meijers JHC, Bootsma D, Van Kessel AD (1990): The cellular retinoicacid binding protein is expressed in tissues associated with retinoic-acid-induced malformations. Development 110: 371–378PubMedGoogle Scholar
  216. Valcárcel R, Holz H, García Jiménez C, Barettino D, Stunnenberg HG (1994): Retinoid-dependent in vitro transcription mediated by the RXR/RAR hetero-dimer (submitted)Google Scholar
  217. Vivanco Ruiz MdM, Bugge T, Hirschmann P, Stunnenberg HG (1991): Functional characterization of a natural element for retinoic acid. EMBO J 10: 3829–3838Google Scholar
  218. Wanek N, Gardiner DM, Muneoka K, Bryant SV (1991): Conversion by retinoic acid of anterior cells into ZPA cells in the chick wing bud. Nature 350: 81–83PubMedCrossRefGoogle Scholar
  219. Wang C, Kelly J, Bowden-Pope DF, Stiles CD (1990): Retinoic acid promotes transcription of the PDGFα-receptor gene. Mol Cell Biol 10: 6781–6784PubMedGoogle Scholar
  220. Wang LH, Tsai SY, Cook RG, Beattie WG, Tsai MJ, O’Malley BW (1989): COUP transcription factor is a member of the steroid receptor superfamily Nature 340: 163–166PubMedCrossRefGoogle Scholar
  221. Warrell RJ, De Thé H, Wang ZY, Degos L (1993): Acute promyelocytic leukemia. New Engl J Med 329: 177–189PubMedCrossRefGoogle Scholar
  222. Wei L-N, Mertz JR, Goodman DS, Nguyen-Huu MC (1987): Cellular retinoic acid-and cellular retinol-binding proteins: complementary deoxyribonucleic acid cloning, chromosomal assignment, and tissue expression. Mol Endocrinol 1: 526–534PubMedCrossRefGoogle Scholar
  223. Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol D, Evans RM (1986): The c-erb A gene encodes a thyroid hormone receptor. Nature 324: 641–646PubMedCrossRefGoogle Scholar
  224. Weis K, Rambaud S, Lavau C, Jansen J, Carvalho T, Carmo-Fonseca M, Lamond A, Dejean A (1994): Retinoic acid regulates aberrant nuclear localization of PML-RARα in acute promyelocytic leukemia cells. Cell 16: 345–356CrossRefGoogle Scholar
  225. Widom RL, Rhee M, Karathanasis SK (1992): Repression by ARP-1 sensitizes apolipoprotein AI gene responsiveness to RXR alpha and retinoic acid. Mol Cell Biol 12: 3380–3389PubMedGoogle Scholar
  226. Wilson TE, Paulsen RE, Padgett KA, Milbrandt J (1992): Participation of non-Zinc finger residues in DNA binding by two nuclear orphan receptors. Science 256: 107–110PubMedCrossRefGoogle Scholar
  227. Yang-Yen HF, Chambard JC, Sun YL, Smeal T, Schmidt TJ, Drouin J, Karin M (1990): Transcriptional interference between c-jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein-protein interaction. Cell 62: 1205–1215PubMedCrossRefGoogle Scholar
  228. Yao T-P, Segraves WA, Oro AE, McKeown M, Evans RM (1992): Drosophila ultraspiracle modulates ecdysone receptor function via heterodimer formation. Cell 71: 63–72PubMedCrossRefGoogle Scholar
  229. Ylikomi T, Bocquel MT, Berry M, Gronemeyer H, Chambon P (1992): Cooperation of proto-signals for nuclear accumulation of estrogen and progesterone receptors. EMBO J 11: 3681–3694PubMedGoogle Scholar
  230. Yu VC, Delsert C, Andersen B, Holloway JM, Devary OM, Näär AM, Kim SY, Boutin J-M, Glass CK, Rosenfeld MG (1991): RXRβ: a coregulator that enhances binding of retinoic acid, thyroid hormone and vitamin D receptors to their cognate response elements. Cell 67: 1251–1266PubMedCrossRefGoogle Scholar
  231. Yu VC, Näär AM, Rosenfeld MG (1992): Transcriptional regulation by the nuclear receptor superfamily. Curr Opin Biotechnol 3: 597–602PubMedCrossRefGoogle Scholar
  232. Zechel C, Shen X-Q, Chambon P, Gronemeyer H (1944a): Dimerization interfaces formed between the DNA binding domains determine the cooperative binding of RXR/RAR and RXR/TR heterodimers to DR5 and DR4 elements. EMBO J 13: 1414–1424Google Scholar
  233. Zechel C, Shen X-Q, Chen J-Y, Chen Z-P, Chambon P, Gronemeyer H (1994b): The dimerization interfaces formed between the DNA binding domains of RXR, RAR and TR determine the binding specificity and polarity of the full-length receptors to direct repeats. EMBO J 13: 1425–1433PubMedGoogle Scholar
  234. Zelent A, Krust A, Petkovich M, Kastner P, Chambon P (1989): Cloning of murine α and β retinoic acid receptors and a novel receptor y predominantly expressed inskin. Nature 339: 714–717PubMedCrossRefGoogle Scholar
  235. Zelent A, Mendelsohn C, Kastner P, Krust A, Gamier JM, Ruffenach F, Leroy P, Chambon P (1991): Differentially expressed isoforms of the mouse retinoic acid receptor β are generated by usage of two promoters and alternative splicing. EMBO J 10:71–81PubMedGoogle Scholar
  236. Zenke M, Muñoz A, Sap J, Vennström B, Beug H (1990): v-erb A oncogene activation entails the loss of hormone-dependent regulator activity of c-erb A. Cell 61: 1035–1049PubMedCrossRefGoogle Scholar
  237. Zhang X, Lehmann J, Hoffmann B, Dawson MI, Cameron J, Graupner G, Hermann T, Tran P, Pfahl M (1992): Homodimer formation of retinoid X receptor induced by 9-cis retinoic acid. Nature 358–591Google Scholar

Copyright information

© Birkhäuser Boston 1995

Authors and Affiliations

  • Marie Keaveney
  • Hendrik G. Stunnenberg

There are no affiliations available

Personalised recommendations