Conformational Search and Protein Folding

  • Robert E. Bruccoleri


Without protein folding, there would be no life as we know it. Genetic information, stored in nucleic acids, specifies a one-dimensional sequence of amino acids that comprise protein molecules. Yet, after synthesis, protein molecules spontaneously fold into a precise three-dimensional structure. Only after the folding process has completed can proteins perform their myriad functions, such as catalysis, regulation, chemical transport, motility, structural support, etc.


Root Mean Square Torsion Angle Root Mean Square Deviation Search Tree Conformational Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen J, Novotny J, Martin J, Heinrich G (1987): Molecular structure of mammalian Neuropeptide Y: Analysis by molecular cloning and computer-aided comparison with crystal structure of avian homologue. Proc Nat Acad Sci USA 84:2532–2536PubMedCrossRefGoogle Scholar
  2. Anglister J, Frey T, McConnell HM (1984): Magnetic resonance of a monoclonal anti-spin label antibody. Biochemistry 23:1138–1142CrossRefGoogle Scholar
  3. Ashwell JD, Klausner RD (1990): Genetic and mutational analysis of the t-cell antigen receptor. Annu Rev Immunol 8:139–167PubMedCrossRefGoogle Scholar
  4. Banner DW, Bloomer AC, Petsko GA, Phillips DC, Wilson IA (1976): Atomic coordinates for Triose Phosphate Isomerase from chicken muscle. Biochem Biophys Res Comm 72:146–155PubMedCrossRefGoogle Scholar
  5. Bassolino D, Bruccoleri RE, Subramaniam S (1992): Modeling the antigen combining site of an anti-dinitrophenyl antibody, ANO2. Protein Science 1:1465–1476CrossRefGoogle Scholar
  6. Bassolino-Klimas D, Bruccoleri RE (1992): The application of a directed conformational search for generating 3-D coordinates for protein structures from α-carbon coordinates. Proteins: Struc Fund Gen 14:465–474CrossRefGoogle Scholar
  7. Bernstein FC, Koetzle TF, Williams GJB, Meyer EF, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977): The Protein Data Bank: A computerbased archival file for macromolecular structures. J Mol Biol 112:535–542PubMedCrossRefGoogle Scholar
  8. Brady L, Brzozowski AM, Derewenda ZS, Dodson EJ, Dodson GG, Tolley SP, Turkenburg JP (1990): A serine protease triad forms the catalytic center of a triacyclglycerol lipase. Nature 343:767–770PubMedCrossRefGoogle Scholar
  9. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983): CHARMM: A program for macromolecular energy minimization and dynamics calculations. J Comp Chem 4:187–217CrossRefGoogle Scholar
  10. Bruccoleri RE (1993a): Application of systematic conformational search to protein modeling. Mol Sim 10:151–174CrossRefGoogle Scholar
  11. Bruccoleri RE (1993b): Grid positioning independence and the reduction of selfenergy in the solution of the Poisson-Boltzmann equation. J Comput Chem 14:1417–1422CrossRefGoogle Scholar
  12. Bruccoleri RE, Haber E, Novotny J (1988): Structure of antibody hypervariable loops reproduced by a conformational search algorithm. Nature 335:564–568; see Errata, vol. 336, p. 266PubMedCrossRefGoogle Scholar
  13. Bruccoleri RE, Karplus M (1985): Chain closure with bond angle variations. Macromolecules 18:2767–2773CrossRefGoogle Scholar
  14. Bruccoleri RE, Karplus M (1987): Prediction of the folding of short Polypeptide segments by uniform conformational sampling. Biopolymers 26:137–168PubMedCrossRefGoogle Scholar
  15. Bruccoleri RE, Novotny J (1992): Antibody modeling using the conformational search program, CONGEN. Immunomethods 1:96–106CrossRefGoogle Scholar
  16. Bruccoleri RE, Novotny J, Keck P, Cohen C (1986): Two-stranded α-helical coiledcoils of fibrous proteins. Theoretical analysis of supercoil formation. Biophys J 49:79–81PubMedCrossRefGoogle Scholar
  17. Briinger AT, Leahy DJ, Hynes TR, Fox RO (1991): 2.9Å resolution structure of an anti-dinitrophenyl-spin-label monoclonal antibody Fab fragment with bound hapten. J Mol Biol 221:239–256Google Scholar
  18. Chothia C, Boswell DR, Lesk AM (1988): The outline structure of T-cell alpha-beta receptor. EMBO J 7:3745–3755PubMedGoogle Scholar
  19. Classens M, Cutsem EV, Lasters I, Wodak S (1989): Modelling the Polypeptide backbone with spare parts from known protein structures. Prot Eng 2:335–345CrossRefGoogle Scholar
  20. Claverie JM, Prochnicka-Chalufour A, Bougeleret L (1989): Implications of a fablike Dstructure for the T cell receptor. Immunol Today 10:10–14PubMedCrossRefGoogle Scholar
  21. Colman PM, Freeman HC, Guss JM, Murata M, Norris VA, Ramshaw JAM, Venkatappa MP (1978): X-ray crystal structure analysis of plastocyanin at 2.7 Å resolution. Nature 272:319–324CrossRefGoogle Scholar
  22. Correa P (1990): The building of protein structures from α-carbon coordinates. Proteins: Struct Funct Gen 7:366–377CrossRefGoogle Scholar
  23. Crick FHC (1953): The Fourier transform of a coiled-coil. Acta Cryst 6:685–689CrossRefGoogle Scholar
  24. Deber CM, Madison V, Blout ER (1976): Why cyclic peptides? Complementary approaches to conformation. Acc Chem Res 9:106–113CrossRefGoogle Scholar
  25. Dill KA (1990): Dominant forces in protein folding. Biochemistry 29:7133–7155PubMedCrossRefGoogle Scholar
  26. Dygert M, Gō N, Scheraga HA (1975): Use of a symmetry condition to compute the conformation of Gramicidin S. Macromolecules 8:750–761PubMedCrossRefGoogle Scholar
  27. Eisenberg D, McLachlan AD (1986): Solvation energy in protein folding and binding. Nature 319:199–203PubMedCrossRefGoogle Scholar
  28. Ganju RK, Smiley ST, Bajorath J, Novotny J, Reinherz E (1992): Similarity between fluorescein-specific T cell receptor and antibody in chemical details of antigen recognition. Proc Nat Acad Sci USA 89:11552–11556PubMedCrossRefGoogle Scholar
  29. Geisler N, Weber K (1983): Amino acid sequence data on glial fibrillary acidic protein (GFA): Implications for the subdivision of intermediate filaments into epithelial and non-epithelial members. EMBO J 2:2059–2063PubMedGoogle Scholar
  30. Gierasch LM, King J (1990): Protein Folding: Deciphering the Second Half of the Genetic Code. Washington, DC: American Association for the Advancement of ScienceGoogle Scholar
  31. Gō N, Scheraga HA (1970): Ring closure and local conformational deformations of chain molecules. Macromolecules 3:178–187CrossRefGoogle Scholar
  32. Goldberg DE (1989): Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, Massachusetts: Addison-Wesley Publishing CoGoogle Scholar
  33. Hall D, Pavitt N (1985): Conformation of cyclic analogs of enkephalin. III. Effect of varying ring size. Biopolymers 24:935–945PubMedCrossRefGoogle Scholar
  34. Hall D, Pavitt N, Wood MK (1982): The conformation of pithomycolide. J Comput Chem 3:381–384CrossRefGoogle Scholar
  35. Hardman KD, Ainsworth CF (1972): Structure of Con A at 2.4 Å resolution. Biochemistry 11:4910–4919PubMedCrossRefGoogle Scholar
  36. Harvey SC (1989): Treatment of electrostatic effects in macromolecular modeling. Proteins: Struct Funct Gen 5:78–92CrossRefGoogle Scholar
  37. Herron JN, Hei XM, Mason ML, Voss EW, Edmundson AB (1989): Three-dimensional structure of a fluorescein-Fab complex crystallized in 2-methyl-2,4-pentanediol. Proteins: Struct Funct Gen 5:271–280CrossRefGoogle Scholar
  38. Holm L, Sander C (1991): Database algorithm for generating protein backbone and side-chain coordinates from a C α trace. J Mol Biol 218:183–194PubMedCrossRefGoogle Scholar
  39. Holmgren A, Söderberg B, Eklund H, Bränden C (1975): Three dimensional structure of E Coli thioredoxin-S2 to 2.8 Å resolution. Proc Nat Acad Sci USA 72:2305–2309PubMedCrossRefGoogle Scholar
  40. Jeffrey PD, Strong RK, Sieker LC, Chang CY, Campbell RL, Petsko GA, Haber E, Margolies MN, Sheriff S (1993): 26-10 Fab-digoxin complex: Affinity and specificity due to surface complementarity. Proc Nat Acad Sci USA 90:10310–10314PubMedCrossRefGoogle Scholar
  41. Jones PT, Dear PH, Foote J, Newberger MS, Winter G (1986): Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321:522–525PubMedCrossRefGoogle Scholar
  42. Kabsch W, Sander C (1985): Identical pentapeptides with different backbones. Nature 317:207.PubMedCrossRefGoogle Scholar
  43. Kouzarides T, Ziff E (1988): The role of the leucine zipper in the fos-jun interaction. Nature 336:646–651PubMedCrossRefGoogle Scholar
  44. Krystek SR, Bruccoleri RE, Novotny J (1991): Stabilities of leucine zipper dimers estimated by an empirical free energy method. Int J Peptide Protein Res 38:229–236CrossRefGoogle Scholar
  45. Krystek SR Jr, Bassolino DA, Bruccoleri RE, Hunt JT, Porubcan MA, Wandler CF, Andersen NH (1992): Solution conformation of a cyclic pentapeptide endothelin antagonist: Comparison of structures obtained from constrained dynamics and conformational search. FEBS Letters 299:255–261PubMedCrossRefGoogle Scholar
  46. Landschulz WH, Johnson PF, McKnight SL (1988): The leucine zipper: A hypothetical structure common to a new class of DNA binding proteins. Science 240:1759–1764PubMedCrossRefGoogle Scholar
  47. Lau SYM, Taneja AK, Hodges RS (1984): Synthesis of a model protein of defined secondary and quaternary structure. Effect of chain length on the stabilization and formation of two-stranded α-helical coiled-coils. J Biol Chem 259:13253–13261PubMedGoogle Scholar
  48. Le Grand SM, Merz, KM Jr (1994): The genetic algorithm and protein tertiary structure prediction. In The Protein Folding Problem and Tertiary Structure Prediction, Le Grand SM, Merz, KM Jr, eds. Boston: BirkhäuserGoogle Scholar
  49. Levinthal C (1969): In: Mossbauer Spectroscopy in Biological Systems. Debrunner P, Tsibris JCM, Münck E, eds. Urbana: University of Illinois Press, pp. 22–24Google Scholar
  50. Madison V (1985): Cyclic peptides revisited. Biopolymers 24:97–103CrossRefGoogle Scholar
  51. Marquait M, Deisenhofer J, Huber R, Palm W (1980): Crystallographic refinement and atomic models of the intact immunoglobulin molecule Kol and its antigen-binding fragment at 3.0 Å and 1.0 Å resolution. J Mol Biol 141:369–391CrossRefGoogle Scholar
  52. Martin ACR, Cheetham JC, Rees AR (1991): Molecular modeling of antibody combining sites. Methods in Enzymology 203:121–153PubMedCrossRefGoogle Scholar
  53. Meuer SC, Acuto O, Hercend T, Schlossman SF, Reinherz EL (1990): The human T cell receptor. Annu Rev Immunol 2:23–50CrossRefGoogle Scholar
  54. Mudgett-Hunter M, Anderson W, Haber E, Margolies MN (1985): Binding and structural diversity among high-affinity monoclonal anti-digoxin antibodies. Mol Immunol 22:477–488PubMedCrossRefGoogle Scholar
  55. Near RI, Bruccoleri RE, Novotny J, Hudson NW, White A, Mudgett-Hunter M (1991): The specificity properties that distinguish members of a set of homologous anti-digoxin antibodies are controlled by H chain mutations. J Immunol 146:627–633PubMedGoogle Scholar
  56. Needleman SB, Wunsch CD (1970): A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453PubMedCrossRefGoogle Scholar
  57. Novotny J, Bruccoleri RE, Haber E (1990): Computer analysis of mutations that affect antibody specificity. Proteins: Struct Funct Gen 7:93–98CrossRefGoogle Scholar
  58. Novotny J, Bruccoleri RE, Karplus M (1984): An analysis of incorrectly folded protein models, implications for structure prediction. J Mol Biol 177:787–818PubMedCrossRefGoogle Scholar
  59. Novotny J, Bruccoleri RE, Newell J, Murphy D, Haber E, Karplus M (1983): Molecular anatomy of the antibody binding site. J Biol Chem 258:14433–14437PubMedGoogle Scholar
  60. Novotny J, Ganju RK, Smiley ST, Hussey RE, Luther MA, Recny MA, Siliciano RF, Reinherz EL (1991): A soluble, single-chain T cell receptor fragment endowed with antigen combining properties. Proc Nat Acad Sci USA 88:8646–8650PubMedCrossRefGoogle Scholar
  61. Novotny J, Rashin AA, Bruccoleri RE (1988): Criteria that discriminate between native proteins and incorrectly folded models. Proteins Struct Funct Gen 4:19–30CrossRefGoogle Scholar
  62. Novotny J, Tonegawa S, Saito H, Kranz DM, Eisen HN (1986): Secondary, tertiary and quaternary structure of T-cell-specific immunoglobulin-like Polypeptide chains. Proc Nat Acad Sci USA 83:742–746PubMedCrossRefGoogle Scholar
  63. O’Shea EJ, Klemm JD, Kim PS, Alber T (1991): X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 254:539–544PubMedCrossRefGoogle Scholar
  64. Panka DJ, Mudgett-Hunter M, Parks DR, Peterson LL, Herzenberg LA, Haber E, Margolies MN (1988): Variable region framework differences result in decreased or increased affinity of variant anti-digoxin antibodies. Proc Nat Acad Sci USA 85:3080–3084PubMedCrossRefGoogle Scholar
  65. Pearl J, Korf RE (1987): Search techniques. Ann Rev Comput Sci 2:451–467CrossRefGoogle Scholar
  66. Phillips SEV (1980): Structure and refinement of oxymyoglobin at 1.6 Å resolution. J Mol Biol 142:531–554PubMedCrossRefGoogle Scholar
  67. Pincus MR, Klausner RD, Scheraga HA (1982): Calculation of the three dimensional structure of the membrane-bound portion of melittin from its amino acid sequence. Proc Nat Acad Sci USA 79:5107–5110PubMedCrossRefGoogle Scholar
  68. Purisma EO, Scheraga HA (1984): Conversion of virtual bond chain to a complete Polypeptide chain. Biopolymers 23:1207–1224CrossRefGoogle Scholar
  69. Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963): Stereochemistry of Polypeptide chain configurations. J Mol Biol 7:195–199CrossRefGoogle Scholar
  70. Rees DC, Lipscomb WN (1983): Crystallographic studies on Apocarboxypeptidase A at 1.54 Å resolution. J Mol Biol 168:367–387PubMedCrossRefGoogle Scholar
  71. Reid LS, Thornton JM (1989): Rebuilding flavodoxin from Cα coordinates: A test study. Proteins: Struct Funct Gen 5:170–182CrossRefGoogle Scholar
  72. Satow Y, Cohen GH, Padlan EA, Davies DR (1986): Phosphorylcholine binding immunoglobulin Fab McPC603 — an X-ray diffraction study at 2.7 Å. J Mol Biol 190:593–604PubMedCrossRefGoogle Scholar
  73. Saul FA, Amzel LM, Poljak RJ (1978): Preliminary refinement and structural analysis of the FAB fragment from human immunoglobulin NEW at 2.0 Å resolution. J Biol Chem 253:585–597PubMedGoogle Scholar
  74. Schildbach JF, Near RI, Bruccoleri RE, Haber E, Jeffrey PD, Novotny J, Margolies MN (1993): Modulation of antibody affinity by a noncontact residue: A mutagenesis and molecular modeling study. Prot Sci 2:206–214CrossRefGoogle Scholar
  75. Schildbach JF, Panka DJ, Parks DR, Jager GC, Novotny J, Herzenberg LA, Mudgett-Hunter M, Bruccoleri RE, Haber E, Margolies MN (1991): Altered hapten recognition by two anti-digoxin hybridoma variants due to variable region point mutations. J Biol Chem 266:4640–4647PubMedGoogle Scholar
  76. Sheriff S, Hendrickson W (1987): Structure of Myohemerythrin in the azidomet state at 1.7/1.3 Å resolution. J Mol Biol 197:273–296PubMedCrossRefGoogle Scholar
  77. Sheriff S, Silverton EW, Padlan EA, Cohen GH, Smith-Gill SJ, Finzel BC, Davies DR (1987): The three dimensional structure of an antibody-antigen complex. Proc Nat Acad Sci USA 84:8075–8079PubMedCrossRefGoogle Scholar
  78. Smith WW, Burnet RM, Darling GD, Ludwig ML (1977): Structure of the semiquinone form of flavodoxin from Clostridium M.P. J Mol Biol 117:195–226PubMedCrossRefGoogle Scholar
  79. Suh SW, Bhat TN, Navia MA, Cohen GH, Rao DN, Rudikoff S, Davies DR (1986): The galactan-binding immunoglobulin FAB J539. An x-ray diffraction study at 2.6 Å resolution. Proteins: Struct Fund Genet 1:74–80CrossRefGoogle Scholar
  80. Trail PA, Willner D, Lasch SJ, Henderson AJ, Hofstead S, Casazza AM, Firestone RA, Hellström I, Hellström KE (1993): Cure of xenografted human carcinomas by BR96-Doxorubicin Immunoconjugates. Science 261:212–215PubMedCrossRefGoogle Scholar
  81. Venkatachalam CM, Khaled MA, Sugano H, Urry DW (1981): Nuclear magnetic resonance and conformational energy calculations of repeat peptides of elastin. Conformational characterization of cyclopentadecapeptide cyclo-(L-Val-L-Pro-Gly-L-Val-Gly)3. J Am Chem Soc 103:2372–2379CrossRefGoogle Scholar
  82. Wagner RA, Fischer MJ (1974): The string to string correction problem. J Assoc Comput Mach 32:168–173CrossRefGoogle Scholar
  83. Zwanzig R, Szabo A, Bagchi B (1992): Levinthal’s paradox. Proc Nat Acad Sci USA 89:20–22PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1994

Authors and Affiliations

  • Robert E. Bruccoleri

There are no affiliations available

Personalised recommendations