Advertisement

Association of Rei Immunoglobulin Light Chain VL Domains: The Functional Linearity Of Parameters in Equilibrium Analytical Ultracentrifuge Models for Self-Associating Systems

  • Ian Brooks
  • Ronald Wetzel
  • Winnie Chan
  • Grace Lee
  • Donald G. Watts
  • K. Karl Soneson
  • Preston Hensley
Part of the Emerging Biochemical and Biophysical Techniques book series (EBBT)

Abstract

The analytical ultracentrifuge has had wide application in the characterization of the structure, interaction and function of macromolecules in solution. This includes the determination of molecular weight, the characterization of shape, the determination of subunit stoichiometry, the quantification of ligand binding, the quantification of ligand-binding-promoted conformational changes and the characterization of macromolecular assembly processes (Schachman, 1992). In recent years, however, other technologies have been developed which can make some of the relevent measurements with equal or greater precision, often using less material. For instance, molecular weight can now be routinely determined by gene or protein sequencing and by mass spectroscopic methods, especially electrospray (ES) and matrix-assisted laser-desorption (MALD) MS (Carr, et al, 1991). Ligand binding can be quantified by classical spectroscopic and radiochemical methods as well as by microcalorimetry (Freire, et al, 1990). Ligand binding promoted conformational changes can be characterized by time- resolved fluorescence anisotropy (Lakowicz, 1983; Beechem, et al, 1986; Waxman, et al, 1994) although, the centrifuge still has a major impact in this area (Kirschner and Schachman, 1973a; Kirschner and Schachman, 1973b; Howlett and Schachman, 1977; Eisenstein, et al, 1990) The thermodynamic characterization of macromolecular assembly processes, however, is an area where the analytical ultracentrifuge has few rivals (Adams and Lewis, 1968; Roark and Yphantis, 1969; Hensley, et al, 1975b; Blackburn and Noltman, 1981; Minton and Lewis, 1981; Wilf and Minton, 1981; Correia, et al, 1985; Duong, et al., 1986; Hensley, et al, 1986; Lewis and Youle, 1986; Chatelier and Minton, 1987; Ross, et al, 1991; Rivas, et al, 1992).

Keywords

Nonlinear Parameter Sedimentation Equilibrium Partial Specific Volume Light Chain Deposition Disease Exact Likelihood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, E. T. J. and Lewis, M. S. (1968): Sedimentation equilibrium in reacting systems. VI. Some applications to indefinite self-associations. Studies with beta-lactoglobulin A, Biochemistry 7, 1044–53.PubMedCrossRefGoogle Scholar
  2. Bates, D. M. and Watts, D. G. (1988): Nonlinear Regression Analysis and Its Applications, New York, Wiley Interscience.CrossRefGoogle Scholar
  3. Bates, D. M. and Watts, D. G. (1991): Model building in chemistry using profile t and trace plots., Chemometrics and Intelligent Laboratory Systems 10, 107–116.CrossRefGoogle Scholar
  4. Beechem, J. M., Knutson, J. R., and Brand, L. (1986): Global analysis of multiple dye fluorescence anisotropy experiments on proteins, Biochem Soc Trans 14, 832–5.PubMedGoogle Scholar
  5. Bevington, P. R. (1969): Data Reduction and Error Analysis for the Physical Sciences, New York, McGraw Hill Book Company.Google Scholar
  6. Blackburn, M. N. and Noltman, E. A. (1981): Evidence for an intermediate in the denaturation and assembly of phosphoglucose isomerase., Archives of Biochemistry and Biophysics 212, 162–169.PubMedCrossRefGoogle Scholar
  7. Brooks, I., Watts, D. G., Soneson, K. K., and Hensley, P. (1994a): Determining the Confidence Intervals of Parameters from Analysis of Equilibrium Analytical Ultracentrifuge Data. In: Methods in Enzymology, L. Brand and M. L. Johnson, ed. s, New York, Academic Press, (in press).Google Scholar
  8. Brooks, I., Wetzel, R., Chan, W., Lee, G., Watts, D. G., Soneson, K. K., and Hensley, P. (1994b): A Mutational Analysis of the Relation Between Domain-Domain Interactions in Solution, Inclusion Body and Fibril Formation in vitro for REI, an Immunoglobulin VL(Bence-Jones) Domain Expressed in E. coli, (submitted).Google Scholar
  9. Buxbaum, J. (1992): Mechanisms of disease: Monoclonal immunoglobulin deposition, Hemat. Oncol. Clin. North America 6, 323–346.Google Scholar
  10. Cantor, C. R. and Schimmel, P. R. (1980): Biophysical chemistry, pt. 2: Techniques for the study of biological structure and function., San Francisco, W.H. Freeman and Co.Google Scholar
  11. Carr, S. A., Hemling, M. E., Bean, M. F., and Roberts, G. D. (1991): Integration of mass spectrometry in analytical biotechnology, Analytical Chemistry 63, 2802–2824.PubMedCrossRefGoogle Scholar
  12. Chan, W., Hensley, P., Lee, G., and Wetzel, R. (1993): Secretion into the Escherichia coli periplasm of the immunoglobulin VL domain REI: inclusion body formation, purification, and dimerization of a series of point mutants, Ms. in preparation.Google Scholar
  13. Chatelier, R. C. and Minton, A. P. (1987): Sedimentation equilibrium in macromolecular solutions of arbitrary concentration. I. Self-associating proteins, Biopolymers 26, 507–24.PubMedCrossRefGoogle Scholar
  14. Correia, J. J., Shire, S., Yphantis, D. A., and Schuster, T. M. (1985): Sedimentation equilibrium measurements of the intermediate-size tobacco mosaic virus protein polymers, Biochemistry 24, 3292–7.PubMedCrossRefGoogle Scholar
  15. Creighton, T. E. (1984): Proteins: Structures and Molecular Properties, New York, W. H. Freeman.Google Scholar
  16. Draper, N. and Smith, H. (1981): Applied Regression Analysis, Second Edition, New York, Wiley-Interscience.Google Scholar
  17. Duong, L. T., Eisenstein, E., Green, S. M., Ornberg, R. L., and Hensley, P. (1986): The quaternary structure of ornithine transcarbamoylase and arginase from Saccharomyces cerevisiae, J Biol Chem 261, 12807–13.PubMedGoogle Scholar
  18. Eisenstein, E., Markby, D. W., and Schachman, H. K. (1990): Heterotopic effectors promote a global conformational change in aspartate transcarbamoylase, Biochemistry 29, 3724–31.PubMedCrossRefGoogle Scholar
  19. Epp, O., Colman, P., Fehlhammer, H., Bode, W., Schiffer, M., Huber, R., and Palm, W. (1974): Crystal and molecular structure of a dimer composed of the variable portions of the Bence-Jones protein REI, Eur. J. Biochem. 45, 513–524.PubMedCrossRefGoogle Scholar
  20. Freire, E., Mayorga, O. L., and Straume, M. (1990): Isothermal Titration Calorimetry, Analytical Chemistry 62, 950A–959A.CrossRefGoogle Scholar
  21. Helms, L. R. and Wetzel, R. (1994): Dramatic reduction in domain folding stability by a point mutation, Asp82 to Val82, associated with light chain deposition disease., (submitted).Google Scholar
  22. Hensley, P., Edelstein, S. J., Wharton, D. C., and Gibson, Q. H. (1975b): Conformation and spin state in methemoglobin, J Biol Chem 250, 952–60.PubMedGoogle Scholar
  23. Hensley, P., Moffat, K., and Edelstein, S. J. (1975a): Influence of inositol hexaphosphate binding on subunit dissociation in methemoglobin, J Biol Chem 250, 9391–6.PubMedGoogle Scholar
  24. Hensley, P., O., Keefe, M. C., Spangler, C. J., Osborne, J. C. J., and Vogel, C. W. (1986): The effects of metal ions and temperature on the interaction of cobra venom factor and human complement factor B, J Biol Chem 261, 11038–44.PubMedGoogle Scholar
  25. Howlett, G. J. and Schachman, H. K. (1977): Allosteric regulation of aspartate transcarbamoylase. Changes in the sedimentation coefficient promoted by the bisubstrate analogue N-(phosphonacetyl)-L-aspartate, Biochemistry 16, 5077–83.PubMedCrossRefGoogle Scholar
  26. Johnson, M. L. and Faunt, L. M. (1992): Parameter estimation by least-squares methods. In: Methods Enzymol, L. Brand and M. L. Johnson, ed. s, New York, Academic Press, 1–37.Google Scholar
  27. Johnson, M. L. and Staume, M. (1994): Comments on the Analysis of Sedimentation Equilbrium Experiments. In: Modern Analytical Ultracentrifugation: Acquisition and Interpretation of Data for Biological and Synthetic Polymer Systems, T. M. Schuster and T. M. Laue, ed. s, Boston, MA, Birkhauser Boston, Inc., (this volume).Google Scholar
  28. Kirschner, M. W. and Schachman, H. K. (1973a): Local and gross conformational changes in aspartate transcarbamylase, Biochemistry 12, 2997–3004.PubMedCrossRefGoogle Scholar
  29. Kirschner, M. W. and Schachman, H. K. (1973b): Conformational studies on the nitrated catalytic subunit of aspartate transcarbamylase, Biochemistry 12, 2987–97.PubMedCrossRefGoogle Scholar
  30. Kosaka, M., Iishi, Y., Okagawa, K., Saito, S., Sugihara, J., and Muto, Y. (1989): Tetrameric Bence-Jones protein in the immunoproliferative diseases, Am. J. Clin. Path. 91, 639–646.PubMedGoogle Scholar
  31. Kratky, O., Leopold, H., and Stabinger, H. (1973): Determination of the partial specific volume of proteins by the mechanical oscillator tecnhique. In: Methods in Enzymology. Enzyme Structure, part D, C. H. W. Hirs and S. N. Timasheff, ed. s, New York, Academic Press, 98–110.Google Scholar
  32. Lakowicz, J. R. (1983): Principles of Fluorescence Spectroscopy, New York, Plenum. Association of REI Immunoglobulin Light Chain VL DomainsGoogle Scholar
  33. Laue, T. M., Shah, B. D., Ridgeway, T. M., and Pelletier, S. L. (1992): Computer-Aided Interpretation of Analytical Sedimentation Data for Proteins. In: Analytical Ultracentrifugation in Biochemistry and Polymer Science, S. E. Harding, A. J. Rowe and J. C. Horton, ed. s, Cambridge, Great Britain, The Royal Society of Chemistry, 90–125.Google Scholar
  34. Lee, G., Chan, W., Hurle, M. R., DesJarlais, R. L., Watson, F., Sathe, G. M., and Wetzel, R. (1993): Strong inhibition of fibrinogen binding to platelet receptor allbßlllby RGD sequences installed into a presentation scaffold, Protein Engineering 6, 745–754.PubMedCrossRefGoogle Scholar
  35. Lewis, M. S. and Youle, R. J. (1986): Ricin subunit association. Thermodynamics and the role of the disulfide bond in toxicity, J Biol Chem 261, 11571–7.PubMedGoogle Scholar
  36. Minton, A. P. (1994): Conservation of signal: a new algorithm for the elimination of reference concentration as an independent parameter in the analysis of sedimentation equilbrium data. In: Modern Analytical Ultracentrifugation: Acquisition and Interpretation of Data for Biological and Synthetic Polymer Systems, T. M. Shuster and T. M. Laue, ed. s, Boston, MA, Birkhauser Boston, Inc., (This volume).Google Scholar
  37. Minton, A. P. and Lewis, M. S. (1981): Self-association in highly concentrated solutions of myoglobin: a novel analysis of sedimentation equilibrium of highly nonideal solutions, Biophys Chem 14,317–24. Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. ( 1986 ): Numerical Recipies — The Art of Scientific Computing, New York, Cambridge University Press.Google Scholar
  38. Rivas, G., Ingham, K. C., and Minton, A. P. (1992): Calcium-linked self- association of human complement C1s, Biochemistry 31, 11707–12.PubMedCrossRefGoogle Scholar
  39. Roark, D. E. and Yphantis, D. A. (1969): Studies of self-associating systems by equilibrium ultracentrifugation, Ann NY. Acad. Sci. 164, 245–78.PubMedCrossRefGoogle Scholar
  40. Ross, P. D., Howard, F. B., and Lewis, M. S. (1991): Thermodynamics of antiparallel hairpin-double helix equilibria in DNA oligonucleotides from equilibrium ultracentrifugation, Biochemistry 30, 6269–75.PubMedCrossRefGoogle Scholar
  41. Schachman, H. K. (1992): Is There a Future for the Ultracentrifuge? In: Analytical Ultracentrifugation in Biochemistry and Polymer Science, S. E. Harding, A. J. Rowe and J. C. Horton, ed. s, Cambridge, Great Britain, The Royal Society of Chemistry, 3–15.Google Scholar
  42. Stevens, F. J., Westholm, F. A., Solomon, A., and Schiffer, M. (1980): Self- association of human immunoglobulin kI light chains: Role of the third hypervariable region, Proc. Natl Acad. Sci. USA 77, 1144–1148.PubMedCrossRefGoogle Scholar
  43. Straume, M. and Johnson, M. L. (1992): Monte Carlo method for determining complete confidence probability distributions of estimated model parameters. In: Methods Enzymol, L. Brand and M. L. Johnson, ed. s, New York, Academic Press, 117–29.Google Scholar
  44. Watts, D. G. (1991): Model building in chemistry using profile t and trace plots., Chemometrics and intelligent laboratory systems 10, 107–116.CrossRefGoogle Scholar
  45. Watts, D. G. (1994): How good are parameter estimates from nonlinear models? In: Methods in Enzymology, L. Brand and M. L. Johnson, ed. s, New York, NY, Academic Press, (in press).Google Scholar
  46. Waxman, E., Laws, W. R., Laue, T. M., and Ross, J. B. A. (1994): Refining Hydrodynamic Shapes of Proteins: The Combination of Data from Analytical Ultracentrifugation and Time-Resolved Fluorescence Anisotropy Decay. In: Modern Analytical Ultracentrifugation: Acquisition and Interpretation of Data for Biological and Synthetic Polymer Systems, T. M. Schuster and T. M. Laue, ed. s, Boston, MA, Birkhouser Boston, Inc, (This Volume).Google Scholar
  47. Wetzel, R. (1992): Protein aggregation in vivo: Bacterial inclusion bodies and mammalian amyloid. In: Stability of Protein Pharmaceuticals: In Vivo Pathways of Degradation and Strategies for Protein Stabilization, T. J. Ahern and M. C. Manning, ed. s, New York, Plenum Press, 43–88.Google Scholar
  48. Wetzel, R. (1994): Aggregation - The Dark Side of Protein Folding, Trends in Biotechnology 12, (in press).Google Scholar
  49. Wetzel, R., Hurle, M. R., Li, L., Helms, L., and Chan, W. (1993): Molecular basis of sequence effects in light chain amyloidosis and light chain deposition disease, Submitted.Google Scholar
  50. Wilf, J. and Minton, A. P. (1981): Evidence for protein self-association induced by excluded volume. Myoglobin in the presence of globular proteins, Biochim Biophys Acta 670, 316–22.PubMedGoogle Scholar
  51. Zimyatnin, A. A. (1972): Protein volume in solution., Prog. Biophys. Mol. Biol. 24, 109–123.Google Scholar

Copyright information

© Birkhäuser Boston 1994

Authors and Affiliations

  • Ian Brooks
  • Ronald Wetzel
  • Winnie Chan
  • Grace Lee
  • Donald G. Watts
  • K. Karl Soneson
  • Preston Hensley

There are no affiliations available

Personalised recommendations